模型:
flair/ner-dutch
This is the standard 4-class NER model for Dutch that ships with Flair .
F1-Score: 92,58 (CoNLL-03)
Predicts 4 tags:
tag | meaning |
---|---|
PER | person name |
LOC | location name |
ORG | organization name |
MISC | other name |
Based on Transformer embeddings and LSTM-CRF.
Requires: Flair ( pip install flair )
from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-dutch") # make example sentence sentence = Sentence("George Washington ging naar Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity)
This yields the following output:
Span [1,2]: "George Washington" [− Labels: PER (0.997)] Span [5]: "Washington" [− Labels: LOC (0.9996)]
So, the entities " George Washington " (labeled as a person ) and " Washington " (labeled as a location ) are found in the sentence " George Washington ging naar Washington ".
The following Flair script was used to train this model:
from flair.data import Corpus from flair.datasets import CONLL_03_DUTCH from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = CONLL_03_DUTCH() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize embeddings embeddings = TransformerWordEmbeddings('wietsedv/bert-base-dutch-cased') # 5. initialize sequence tagger tagger: SequenceTagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-dutch', train_with_dev=True, max_epochs=150)
Please cite the following paper when using this model.
@inproceedings{akbik-etal-2019-flair, title = "{FLAIR}: An Easy-to-Use Framework for State-of-the-Art {NLP}", author = "Akbik, Alan and Bergmann, Tanja and Blythe, Duncan and Rasul, Kashif and Schweter, Stefan and Vollgraf, Roland", booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics (Demonstrations)", year = "2019", url = "https://www.aclweb.org/anthology/N19-4010", pages = "54--59", }
The Flair issue tracker is available here .