模型:
fcakyon/yolov5n-v7.0
pip install -U yolov5
import yolov5 # load model model = yolov5.load('fcakyon/yolov5n-v7.0') # set model parameters model.conf = 0.25 # NMS confidence threshold model.iou = 0.45 # NMS IoU threshold model.agnostic = False # NMS class-agnostic model.multi_label = False # NMS multiple labels per box model.max_det = 1000 # maximum number of detections per image # set image img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model(img) # inference with larger input size results = model(img, size=640) # inference with test time augmentation results = model(img, augment=True) # parse results predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] # show detection bounding boxes on image results.show() # save results into "results/" folder results.save(save_dir='results/')
yolov5 train --img 640 --batch 16 --weights fcakyon/yolov5n-v7.0 --epochs 10 --device cuda:0