模型:
facebook/levit-128S
LeViT-128S model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference by Graham et al. and first released in this repository .
Disclaimer: The team releasing LeViT did not write a model card for this model so this model card has been written by the Hugging Face team.
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
from transformers import LevitFeatureExtractor, LevitForImageClassificationWithTeacher from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = LevitFeatureExtractor.from_pretrained('facebook/levit-128S') model = LevitForImageClassificationWithTeacher.from_pretrained('facebook/levit-128S') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx])