模型:
dslim/bert-large-NER
bert-large-NER is a fine-tuned BERT model that is ready to use for Named Entity Recognition and achieves state-of-the-art performance for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).
Specifically, this model is a bert-large-cased model that was fine-tuned on the English version of the standard CoNLL-2003 Named Entity Recognition dataset.
If you'd like to use a smaller BERT model fine-tuned on the same dataset, a bert-base-NER version is also available.
You can use this model with Transformers pipeline for NER.
from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER") model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "My name is Wolfgang and I live in Berlin" ner_results = nlp(example) print(ner_results)Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.
This model was fine-tuned on English version of the standard CoNLL-2003 Named Entity Recognition dataset.
The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes:
Abbreviation | Description |
---|---|
O | Outside of a named entity |
B-MIS | Beginning of a miscellaneous entity right after another miscellaneous entity |
I-MIS | Miscellaneous entity |
B-PER | Beginning of a person’s name right after another person’s name |
I-PER | Person’s name |
B-ORG | Beginning of an organization right after another organization |
I-ORG | organization |
B-LOC | Beginning of a location right after another location |
I-LOC | Location |
This dataset was derived from the Reuters corpus which consists of Reuters news stories. You can read more about how this dataset was created in the CoNLL-2003 paper.
# of training examples per entity typeDataset | LOC | MISC | ORG | PER |
---|---|---|---|---|
Train | 7140 | 3438 | 6321 | 6600 |
Dev | 1837 | 922 | 1341 | 1842 |
Test | 1668 | 702 | 1661 | 1617 |
Dataset | Articles | Sentences | Tokens |
---|---|---|---|
Train | 946 | 14,987 | 203,621 |
Dev | 216 | 3,466 | 51,362 |
Test | 231 | 3,684 | 46,435 |
This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the original BERT paper which trained & evaluated the model on CoNLL-2003 NER task.
metric | dev | test |
---|---|---|
f1 | 95.7 | 91.7 |
precision | 95.3 | 91.2 |
recall | 96.1 | 92.3 |
The test metrics are a little lower than the official Google BERT results which encoded document context & experimented with CRF. More on replicating the original results here .
@article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction, title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition", author = "Tjong Kim Sang, Erik F. and De Meulder, Fien", booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003", year = "2003", url = "https://www.aclweb.org/anthology/W03-0419", pages = "142--147", }