Language model: xlm-roberta-base Language: Multilingual Downstream-task: Extractive QA Training data: SQuAD 2.0 Eval data: SQuAD 2.0 dev set - German MLQA - German XQuAD Code: See example in FARM Infrastructure : 4x Tesla v100
batch_size = 22*4 n_epochs = 2 max_seq_len=256, doc_stride=128, learning_rate=2e-5,
Corresponding experiment logs in mlflow: link
Evaluated on the SQuAD 2.0 dev set with the official eval script .
"exact": 73.91560683904657 "f1": 77.14103746689592
Evaluated on German MLQA: test-context-de-question-de.json "exact": 33.67279167589108 "f1": 44.34437105434842 "total": 4517
Evaluated on German XQuAD: xquad.de.json "exact": 48.739495798319325 "f1": 62.552615701071495 "total": 1190
from transformers.pipelines import pipeline from transformers.modeling_auto import AutoModelForQuestionAnswering from transformers.tokenization_auto import AutoTokenizer model_name = "deepset/xlm-roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.tokenization import Tokenizer from farm.infer import Inferencer model_name = "deepset/xlm-roberta-base-squad2" # a) Get predictions nlp = Inferencer.load(model_name, task_type="question_answering") QA_input = [{"questions": ["Why is model conversion important?"], "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}] res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True) # b) Load model & tokenizer model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering") tokenizer = Tokenizer.load(model_name)
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack :
reader = FARMReader(model_name_or_path="deepset/xlm-roberta-base-squad2") # or reader = TransformersReader(model="deepset/roberta-base-squad2",tokenizer="deepset/xlm-roberta-base-squad2")
Branden Chan: branden.chan [at] deepset.ai Timo Möller: timo.moeller [at] deepset.ai Malte Pietsch: malte.pietsch [at] deepset.ai Tanay Soni: tanay.soni [at] deepset.ai
We bring NLP to the industry via open source! Our focus: Industry specific language models & large scale QA systems.
Some of our work:
Get in touch: Twitter | LinkedIn | Discord | GitHub Discussions | Website
By the way: we're hiring!