模型:
dangvantuan/sentence-camembert-base
任务:
句子相似度语言:
fr其他:
camembert 特征提取 Text Sentence Similarity Sentence-Embedding camembert-base Eval Results Sentence+Similarity预印本库:
arxiv:1908.10084许可:
apache-2.0Model is Fine-tuned using pre-trained facebook/camembert-base and Siamese BERT-Networks with 'sentences-transformers' on dataset stsb
The model can be used directly (without a language model) as follows:
from sentence_transformers import SentenceTransformer model = SentenceTransformer("dangvantuan/sentence-camembert-base") sentences = ["Un avion est en train de décoller.", "Un homme joue d'une grande flûte.", "Un homme étale du fromage râpé sur une pizza.", "Une personne jette un chat au plafond.", "Une personne est en train de plier un morceau de papier.", ] embeddings = model.encode(sentences)
The model can be evaluated as follows on the French test data of stsb.
from sentence_transformers import SentenceTransformer from sentence_transformers.readers import InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from datasets import load_dataset def convert_dataset(dataset): dataset_samples=[] for df in dataset: score = float(df['similarity_score'])/5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[df['sentence1'], df['sentence2']], label=score) dataset_samples.append(inp_example) return dataset_samples # Loading the dataset for evaluation df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev") df_test = load_dataset("stsb_multi_mt", name="fr", split="test") # Convert the dataset for evaluation # For Dev set: dev_samples = convert_dataset(df_dev) val_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') val_evaluator(model, output_path="./") # For Test set: test_samples = convert_dataset(df_test) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') test_evaluator(model, output_path="./")
Test Result : The performance is measured using Pearson and Spearman correlation:
Model | Pearson correlation | Spearman correlation | #params |
---|---|---|---|
dangvantuan/sentence-camembert-base | 86.73 | 86.54 | 110M |
distiluse-base-multilingual-cased | 79.22 | 79.16 | 135M |
Model | Pearson correlation | Spearman correlation |
---|---|---|
dangvantuan/sentence-camembert-base | 82.36 | 81.64 |
distiluse-base-multilingual-cased | 78.62 | 77.48 |
@article{reimers2019sentence, title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks}, author={Nils Reimers, Iryna Gurevych}, journal={https://arxiv.org/abs/1908.10084}, year={2019} } @article{martin2020camembert, title={CamemBERT: a Tasty French Language Mode}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} }