模型:
dangvantuan/CrossEncoder-camembert-large
Cross-Encoder for sentence-similarity
This model was trained using sentence-transformers Cross-Encoder class.
This model was trained on the STS benchmark dataset . The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import CrossEncoder model = CrossEncoder('dangvantuan/CrossEncoder-camembert-large', max_length=128) scores = model.predict([('Un avion est en train de décoller.', "Un homme joue d'une grande flûte."), ("Un homme étale du fromage râpé sur une pizza.", "Une personne jette un chat au plafond") ])
The model can be evaluated as follows on the French test data of stsb.
from sentence_transformers.readers import InputExample from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator from datasets import load_dataset def convert_dataset(dataset): dataset_samples=[] for df in dataset: score = float(df['similarity_score'])/5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[df['sentence1'], df['sentence2']], label=score) dataset_samples.append(inp_example) return dataset_samples # Loading the dataset for evaluation df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev") df_test = load_dataset("stsb_multi_mt", name="fr", split="test") # Convert the dataset for evaluation # For Dev set: dev_samples = convert_dataset(df_dev) val_evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name='sts-dev') val_evaluator(model, output_path="./") # For Test set test_samples = convert_dataset(df_test) test_evaluator = CECorrelationEvaluator.from_input_examples(test_samples, name='sts-test') test_evaluator(models, output_path="./")
Test Result : The performance is measured using Pearson and Spearman correlation:
On dev
Model | Pearson correlation | Spearman correlation | #params |
---|---|---|---|
dangvantuan/CrossEncoder-camembert-large | 90.11 | 90.01 | 336M |
On test
Model | Pearson correlation | Spearman correlation |
---|---|---|
dangvantuan/CrossEncoder-camembert-large | 88.16 | 87.57 |