This model was trained using SentenceTransformers Cross-Encoder class, gradient accumulation PR , and the code from CyberAgentAILab/japanese-nli-model .
The model was trained on the JGLUE-JNLI and JSICK datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('cyberagent/xlm-roberta-large-jnli-jsick') model = AutoModelForSequenceClassification.from_pretrained('cyberagent/xlm-roberta-large-jnli-jsick') features = tokenizer(["子供が走っている猫を見ている", "猫が走っている"], ["猫が走っている", "子供が走っている"], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] print(labels)