This is the DeepPavlov/rubert-base-cased fine-tuned to predict the logical relationship between two short texts: entailment, contradiction, or neutral.
How to run the model for NLI:
# !pip install transformers sentencepiece --quiet import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification model_checkpoint = 'cointegrated/rubert-base-cased-nli-threeway' tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) if torch.cuda.is_available(): model.cuda() text1 = 'Сократ - человек, а все люди смертны.' text2 = 'Сократ никогда не умрёт.' with torch.inference_mode(): out = model(**tokenizer(text1, text2, return_tensors='pt').to(model.device)) proba = torch.softmax(out.logits, -1).cpu().numpy()[0] print({v: proba[k] for k, v in model.config.id2label.items()}) # {'entailment': 0.009525929, 'contradiction': 0.9332064, 'neutral': 0.05726764}
You can also use this model for zero-shot short text classification (by labels only), e.g. for sentiment analysis:
def predict_zero_shot(text, label_texts, model, tokenizer, label='entailment', normalize=True): label_texts tokens = tokenizer([text] * len(label_texts), label_texts, truncation=True, return_tensors='pt', padding=True) with torch.inference_mode(): result = torch.softmax(model(**tokens.to(model.device)).logits, -1) proba = result[:, model.config.label2id[label]].cpu().numpy() if normalize: proba /= sum(proba) return proba classes = ['Я доволен', 'Я недоволен'] predict_zero_shot('Какая гадость эта ваша заливная рыба!', classes, model, tokenizer) # array([0.05609814, 0.9439019 ], dtype=float32) predict_zero_shot('Какая вкусная эта ваша заливная рыба!', classes, model, tokenizer) # array([0.9059292 , 0.09407079], dtype=float32)
Alternatively, you can use Huggingface pipelines for inference.
The model has been trained on a series of NLI datasets automatically translated to Russian from English.
Most datasets were taken from the repo of Felipe Salvatore : JOCI , MNLI , MPE , SICK , SNLI .
Some datasets obtained from the original sources: ANLI , NLI-style FEVER , IMPPRES .
The table below shows ROC AUC (one class vs rest) for five models on the corresponding dev sets:
model | add_one_rte | anli_r1 | anli_r2 | anli_r3 | copa | fever | help | iie | imppres | joci | mnli | monli | mpe | scitail | sick | snli | terra | total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n_observations | 387 | 1000 | 1000 | 1200 | 200 | 20474 | 3355 | 31232 | 7661 | 939 | 19647 | 269 | 1000 | 2126 | 500 | 9831 | 307 | 101128 |
tiny/entailment | 0.77 | 0.59 | 0.52 | 0.53 | 0.53 | 0.90 | 0.81 | 0.78 | 0.93 | 0.81 | 0.82 | 0.91 | 0.81 | 0.78 | 0.93 | 0.95 | 0.67 | 0.77 |
twoway/entailment | 0.89 | 0.73 | 0.61 | 0.62 | 0.58 | 0.96 | 0.92 | 0.87 | 0.99 | 0.90 | 0.90 | 0.99 | 0.91 | 0.96 | 0.97 | 0.97 | 0.87 | 0.86 |
threeway/entailment | 0.91 | 0.75 | 0.61 | 0.61 | 0.57 | 0.96 | 0.56 | 0.61 | 0.99 | 0.90 | 0.91 | 0.67 | 0.92 | 0.84 | 0.98 | 0.98 | 0.90 | 0.80 |
vicgalle-xlm/entailment | 0.88 | 0.79 | 0.63 | 0.66 | 0.57 | 0.93 | 0.56 | 0.62 | 0.77 | 0.80 | 0.90 | 0.70 | 0.83 | 0.84 | 0.91 | 0.93 | 0.93 | 0.78 |
facebook-bart/entailment | 0.51 | 0.41 | 0.43 | 0.47 | 0.50 | 0.74 | 0.55 | 0.57 | 0.60 | 0.63 | 0.70 | 0.52 | 0.56 | 0.68 | 0.67 | 0.72 | 0.64 | 0.58 |
threeway/contradiction | 0.71 | 0.64 | 0.61 | 0.97 | 1.00 | 0.77 | 0.92 | 0.89 | 0.99 | 0.98 | 0.85 | |||||||
threeway/neutral | 0.79 | 0.70 | 0.62 | 0.91 | 0.99 | 0.68 | 0.86 | 0.79 | 0.96 | 0.96 | 0.83 |
For evaluation (and for training of the tiny and twoway models), some extra datasets were used: Add-one RTE , CoPA , IIE , and SCITAIL taken from the repo of Felipe Salvatore and translatted, HELP and MoNLI taken from the original sources and translated, and Russian TERRa .