FastPolDeepNer is model for Named Entity Recognition, designed for easy use, training and configuration. The forerunner of this project is PolDeepNer2 . The model implements a pipeline consisting of data processing and training using: hydra, pytorch, pytorch-lightning, transformers.
Source code: https://gitlab.clarin-pl.eu/grupa-wieszcz/ner/fast-pdn
Here is how to use this model to get Named Entities in text:
from transformers import pipeline ner = pipeline('ner', model='clarin-pl/FastPDN', aggregation_strategy='simple') text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu." ner_results = ner(text) for output in ner_results: print(output) {'entity_group': 'nam_liv_person', 'score': 0.9996054, 'word': 'Jan Kowalski', 'start': 12, 'end': 24} {'entity_group': 'nam_loc_gpe_city', 'score': 0.998931, 'word': 'Wrocławiu', 'start': 39, 'end': 48}
Here is how to use this model to get the logits for every token in text:
from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("clarin-pl/FastPDN") model = AutoModelForTokenClassification.from_pretrained("clarin-pl/FastPDN") text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input)
The FastPDN model was trained on datasets (with 82 class versions) of kpwr and cen. Annotation guidelines are specified here .
FastPDN models have been fine-tuned, thanks to pretrained models:
Runs trained on cen_n82 and kpwr_n82 :
name | test/f1 | test/pdn2_f1 | test/acc | test/precision | test/recall |
---|---|---|---|---|---|
distiluse | 0.53 | 0.61 | 0.95 | 0.55 | 0.54 |
herbert | 0.68 | 0.78 | 0.97 | 0.7 | 0.69 |