模型:
ckiplab/bert-base-han-chinese
Pretrained model on Ancient Chinese language using a masked language modeling (MLM) objective.
The copyright of the datasets belongs to the Institute of Linguistics, Academia Sinica.
Using our model in your script
from transformers import (
AutoTokenizer,
AutoModel,
)
tokenizer = AutoTokenizer.from_pretrained("ckiplab/bert-base-han-chinese")
model = AutoModel.from_pretrained("ckiplab/bert-base-han-chinese")
Using our model for inference
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='ckiplab/bert-base-han-chinese')
>>> unmasker("黎[MASK]於變時雍。")
[{'sequence': '黎 民 於 變 時 雍 。',
'score': 0.14885780215263367,
'token': 3696,
'token_str': '民'},
{'sequence': '黎 庶 於 變 時 雍 。',
'score': 0.0859643816947937,
'token': 2433,
'token_str': '庶'},
{'sequence': '黎 氏 於 變 時 雍 。',
'score': 0.027848130092024803,
'token': 3694,
'token_str': '氏'},
{'sequence': '黎 人 於 變 時 雍 。',
'score': 0.023678112775087357,
'token': 782,
'token_str': '人'},
{'sequence': '黎 生 於 變 時 雍 。',
'score': 0.018718384206295013,
'token': 4495,
'token_str': '生'}]