模型:

cardiffnlp/twitter-roberta-base-hate-latest

中文

cardiffnlp/twitter-roberta-base-hate-latest

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2022-154m for binary hate-speech classification. A combination of 13 different hate-speech datasets in the English language were used to fine-tune the model.

Following metrics are achieved

Dataset Accuracy Macro-F1 Weighted-F1
hatEval, SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter 0.5831 0.5646 0.548
ucberkeley-dlab/measuring-hate-speech 0.9273 0.9193 0.928
Detecting East Asian Prejudice on Social Media 0.9231 0.6623 0.9428
Call me sexist, but 0.9686 0.9203 0.9696
Predicting the Type and Target of Offensive Posts in Social Media 0.9164 0.6847 0.9098
HateXplain 0.8653 0.845 0.8662
Large Scale Crowdsourcing and Characterization of Twitter Abusive BehaviorLarge Scale Crowdsourcing and Characterization of Twitter Abusive Behavior 0.7801 0.7446 0.7614
Multilingual and Multi-Aspect Hate Speech Analysis 0.9944 0.4986 0.9972
Hate speech and offensive content identification in indo-european languages 0.8779 0.6904 0.8706
Are You a Racist or Am I Seeing Things? 0.921 0.8935 0.9216
Automated Hate Speech Detection 0.9423 0.9249 0.9429
Hate Towards the Political Opponent 0.8783 0.6595 0.8788
Hateful Symbols or Hateful People? 0.8187 0.7833 0.8323
Overall 0.8766 0.7531 0.8745

Usage

Install tweetnlp via pip.

pip install tweetnlp

Load the model in python.

import tweetnlp
model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-hate-latest")
model.predict('I love everybody :)')
>> {'label': 'NOT-HATE'}

Model based on:

@misc{antypas2023robust,
      title={Robust Hate Speech Detection in Social Media: A Cross-Dataset Empirical Evaluation}, 
      author={Dimosthenis Antypas and Jose Camacho-Collados},
      year={2023},
      eprint={2307.01680},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}