模型:
cardiffnlp/tweet-topic-latest-multi
This is a RoBERTa-base model trained on 168.86M tweets until the end of September 2022 and finetuned for multi-label topic classification on a corpus of 11,267 tweets . The original RoBERTa-base model can be found here . This model is suitable for English.
Labels :
0: arts_&_culture | 5: fashion_&_style | 10: learning_&_educational | 15: science_&_technology |
---|---|---|---|
1: business_&_entrepreneurs | 6: film_tv_&_video | 11: music | 16: sports |
2: celebrity_&_pop_culture | 7: fitness_&_health | 12: news_&_social_concern | 17: travel_&_adventure |
3: diaries_&_daily_life | 8: food_&_dining | 13: other_hobbies | 18: youth_&_student_life |
4: family | 9: gaming | 14: relationships |
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import expit MODEL = f"cardiffnlp/tweet-topic-latest-multi" tokenizer = AutoTokenizer.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) class_mapping = model.config.id2label text = "It is great to see athletes promoting awareness for climate change." tokens = tokenizer(text, return_tensors='pt') output = model(**tokens) scores = output[0][0].detach().numpy() scores = expit(scores) predictions = (scores >= 0.5) * 1 # TF #tf_model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) #class_mapping = tf_model.config.id2label #text = "It is great to see athletes promoting awareness for climate change." #tokens = tokenizer(text, return_tensors='tf') #output = tf_model(**tokens) #scores = output[0][0] #scores = expit(scores) #predictions = (scores >= 0.5) * 1 # Map to classes for i in range(len(predictions)): if predictions[i]: print(class_mapping[i])
Output:
fitness_&_health news_&_social_concern sports