模型:
bigscience/bloomz-7b1-mt
我们提出了BLOOMZ & mT0,一系列能够零次转化成多种语言的模型。我们在跨语言任务混合(xP3)上微调了BLOOM & mT5预训练的多语言模型,发现得到的模型能够对未见任务和未见语言进行跨语言泛化。
Multitask finetuned on 1239321 . Recommended for prompting in English. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | 300M | 580M | 1.2B | 3.7B | 13B | 560M | 1.1B | 1.7B | 3B | 7.1B | 176B |
Finetuned Model | 12310321 | 12311321 | 12312321 | 12313321 | 12314321 | 12315321 | 12316321 | 12317321 | 12318321 | 12319321 | 12320321 |
Multitask finetuned on 12321321 . Recommended for prompting in non-English. | |||||||||||
Finetuned Model | 12322321 | 12323321 | 12324321 | ||||||||
Multitask finetuned on 12325321 . Released for research purposes only. Strictly inferior to above models! | |||||||||||
Finetuned Model | 12326321 | 12327321 | 12328321 | ||||||||
Original pretrained checkpoints. Not recommended. | |||||||||||
Pretrained Model | 12329321 | 12330321 | 12331321 | 12332321 | 12333321 | 12334321 | 12335321 | 12336321 | 12337321 | 12338321 | 12339321 |
我们建议使用该模型执行用自然语言表达的任务。例如,给定提示“翻译成英语:Je t’aime。”,该模型很可能会回答“我爱你。”我们的论文中提供了一些提示的创意:
欢迎在“社区”选项卡中分享您的生成结果!
# pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-7b1-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0]))
# pip install -q transformers accelerate from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-7b1-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto") inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0]))
# pip install -q transformers accelerate bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-7b1-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True) inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0]))
提示工程:性能可能因提示的不同而有所差异。对于BLOOMZ模型,我们建议在输入结束时明确表示,以避免模型尝试继续生成。例如,没有句号(.)的提示“翻译成英语:Je t'aime”,可能导致模型试图继续生成法语句子。更好的提示示例包括“翻译成英语:Je t'aime.”,“翻译成英语:Je t'aime.翻译:”或““Je t'aime.”在英语中是什么意思?”等,这样模型就清楚应该在何时回答。此外,我们建议尽可能为模型提供更多的上下文。例如,如果您希望它用泰卢固语回答,请告诉模型,例如“用泰卢固语的一句话解释神经网络中的反向传播是什么。”。
我们参考我们的 paper 和 bigscience/evaluation-results 中的表7,了解对未见任务的零次转化结果。侧边栏报告了每个数据集配置中最佳提示的零次转化性能。
@misc{muennighoff2022crosslingual, title={Crosslingual Generalization through Multitask Finetuning}, author={Niklas Muennighoff and Thomas Wang and Lintang Sutawika and Adam Roberts and Stella Biderman and Teven Le Scao and M Saiful Bari and Sheng Shen and Zheng-Xin Yong and Hailey Schoelkopf and Xiangru Tang and Dragomir Radev and Alham Fikri Aji and Khalid Almubarak and Samuel Albanie and Zaid Alyafeai and Albert Webson and Edward Raff and Colin Raffel}, year={2022}, eprint={2211.01786}, archivePrefix={arXiv}, primaryClass={cs.CL} }