Connect me on LinkedIn
Dataset labelled 58000 Reddit comments with 28 emotions
RoBERTa builds on BERT’s language masking strategy and modifies key hyperparameters in BERT, including removing BERT’s next-sentence pretraining objective, and training with much larger mini-batches and learning rates. RoBERTa was also trained on an order of magnitude more data than BERT, for a longer amount of time. This allows RoBERTa representations to generalize even better to downstream tasks compared to BERT.
Parameter | |
---|---|
Learning rate | 5e-5 |
Epochs | 10 |
Max Seq Length | 50 |
Batch size | 16 |
Warmup Proportion | 0.1 |
Epsilon | 1e-8 |
Best Result of Macro F1 - 49.30%
from transformers import RobertaTokenizerFast, TFRobertaForSequenceClassification, pipeline tokenizer = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa") model = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoRoBERTa") emotion = pipeline('sentiment-analysis', model='arpanghoshal/EmoRoBERTa') emotion_labels = emotion("Thanks for using it.") print(emotion_labels)
Output
[{'label': 'gratitude', 'score': 0.9964383244514465}]