xtreme_s_xlsr_300m_minds14
This model is a fine-tuned version of
facebook/wav2vec2-xls-r-300m
on the GOOGLE/XTREME_S - MINDS14.ALL dataset.
It achieves the following results on the evaluation set:
-
Accuracy: 0.9033
-
Accuracy Cs-cz: 0.9164
-
Accuracy De-de: 0.9477
-
Accuracy En-au: 0.9235
-
Accuracy En-gb: 0.9324
-
Accuracy En-us: 0.9326
-
Accuracy Es-es: 0.9177
-
Accuracy Fr-fr: 0.9444
-
Accuracy It-it: 0.9167
-
Accuracy Ko-kr: 0.8649
-
Accuracy Nl-nl: 0.9450
-
Accuracy Pl-pl: 0.9146
-
Accuracy Pt-pt: 0.8940
-
Accuracy Ru-ru: 0.8667
-
Accuracy Zh-cn: 0.7291
-
F1: 0.9015
-
F1 Cs-cz: 0.9154
-
F1 De-de: 0.9467
-
F1 En-au: 0.9199
-
F1 En-gb: 0.9334
-
F1 En-us: 0.9308
-
F1 Es-es: 0.9158
-
F1 Fr-fr: 0.9436
-
F1 It-it: 0.9135
-
F1 Ko-kr: 0.8642
-
F1 Nl-nl: 0.9440
-
F1 Pl-pl: 0.9159
-
F1 Pt-pt: 0.8883
-
F1 Ru-ru: 0.8646
-
F1 Zh-cn: 0.7249
-
Loss: 0.4119
-
Loss Cs-cz: 0.3790
-
Loss De-de: 0.2649
-
Loss En-au: 0.3459
-
Loss En-gb: 0.2853
-
Loss En-us: 0.2203
-
Loss Es-es: 0.2731
-
Loss Fr-fr: 0.1909
-
Loss It-it: 0.3520
-
Loss Ko-kr: 0.5431
-
Loss Nl-nl: 0.2515
-
Loss Pl-pl: 0.4113
-
Loss Pt-pt: 0.4798
-
Loss Ru-ru: 0.6470
-
Loss Zh-cn: 1.1216
-
Predict Samples: 4086
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
-
learning_rate: 0.0003
-
train_batch_size: 32
-
eval_batch_size: 8
-
seed: 42
-
distributed_type: multi-GPU
-
num_devices: 2
-
total_train_batch_size: 64
-
total_eval_batch_size: 16
-
optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
-
lr_scheduler_type: linear
-
lr_scheduler_warmup_steps: 1500
-
num_epochs: 50.0
-
mixed_precision_training: Native AMP
Training results
Training Loss
|
Epoch
|
Step
|
Validation Loss
|
F1
|
Accuracy
|
2.6739
|
5.41
|
200
|
2.5687
|
0.0430
|
0.1190
|
1.4953
|
10.81
|
400
|
1.6052
|
0.5550
|
0.5692
|
0.6177
|
16.22
|
600
|
0.7927
|
0.8052
|
0.8011
|
0.3609
|
21.62
|
800
|
0.5679
|
0.8609
|
0.8609
|
0.4972
|
27.03
|
1000
|
0.5944
|
0.8509
|
0.8523
|
0.1799
|
32.43
|
1200
|
0.6194
|
0.8623
|
0.8621
|
0.1308
|
37.84
|
1400
|
0.5956
|
0.8569
|
0.8548
|
0.2298
|
43.24
|
1600
|
0.5201
|
0.8732
|
0.8743
|
0.0052
|
48.65
|
1800
|
0.3826
|
0.9106
|
0.9103
|
Framework versions
-
Transformers 4.18.0.dev0
-
Pytorch 1.10.2+cu113
-
Datasets 2.0.1.dev0
-
Tokenizers 0.11.6