模型:
alokmatta/wav2vec2-large-xlsr-53-sw
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Swahili using the following datasets:
When using this model, make sure that your speech input is sampled at 16kHz.
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
processor = Wav2Vec2Processor.from_pretrained("alokmatta/wav2vec2-large-xlsr-53-sw")
model = Wav2Vec2ForCTC.from_pretrained("alokmatta/wav2vec2-large-xlsr-53-sw").to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def load_file_to_data(file):
batch = {}
speech, _ = torchaudio.load(file)
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
return batch
def predict(data):
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
input_values = features.input_values.to("cuda")
attention_mask = features.attention_mask.to("cuda")
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
return processor.batch_decode(pred_ids)
predict(load_file_to_data('./demo.wav'))
Test Result : 40 %
The script used for training can be found here