模型:
akdeniz27/mDeBERTa-v3-base-turkish-ner
This model is the fine-tuned version of "microsoft/mDeBERTa-v3-base" (a multilingual version of DeBERTa V3) using a reviewed version of well known Turkish NER dataset ( https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt ).
task = "ner" model_checkpoint = "microsoft/mdeberta-v3-base" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 2 weight_decay = 0.01
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/mDeBERTa-v3-base-turkish-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/mDeBERTa-v3-base-turkish-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") ner("<your text here>")
Pls refer " https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.