模型:
ai4bharat/MultiIndicParaphraseGeneration
This repository contains the IndicBART checkpoint finetuned on the 11 languages of IndicParaphrase dataset. For finetuning details, see the paper .
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("दिल्ली यूनिवर्सिटी देश की प्रसिद्ध यूनिवर्सिटी में से एक है. </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # For generation. Pardon the messiness. Note the decoder_start_token_id. model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # दिल्ली विश्वविद्यालय देश की प्रमुख विश्वविद्यालयों में शामिल है। # Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the Indic NLP Library.
If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the Indic NLP Library . After you get the output, you should convert it back into the original script.
Scores on the IndicParaphrase test sets are as follows:
Language | BLEU / Self-BLEU / iBLEU |
---|---|
as | 1.66 / 2.06 / 0.54 |
bn | 11.57 / 1.69 / 7.59 |
gu | 22.10 / 2.76 / 14.64 |
hi | 27.29 / 2.87 / 18.24 |
kn | 15.40 / 2.98 / 9.89 |
ml | 10.57 / 1.70 / 6.89 |
mr | 20.38 / 2.20 / 13.61 |
or | 19.26 / 2.10 / 12.85 |
pa | 14.87 / 1.35 / 10.00 |
ta | 18.52 / 2.88 / 12.10 |
te | 16.70 / 3.34 / 10.69 |
If you use this model, please cite the following paper:
@inproceedings{Kumar2022IndicNLGSM, title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, year={2022}, url = "https://arxiv.org/abs/2203.05437" }