模型:
Zayn/AICVTG_What_if_a_machine_could_create_captions_automatically
这是由Zayn进行的图片标题模型训练
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer model = VisionEncoderDecoderModel.from_pretrained("Zayn/AICVTG_What_if_a_machine_could_create_captions_automatically") feature_extractor = ViTFeatureExtractor.from_pretrained("Zayn/AICVTG_What_if_a_machine_could_create_captions_automatically") tokenizer = AutoTokenizer.from_pretrained("Zayn/AICVTG_What_if_a_machine_could_create_captions_automatically") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) max_length = 20 num_beams = 8 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(image_paths): images = [] for image_path in image_paths: i_image = Image.open(image_path) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") images.append(i_image) pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds predict_step(['Image URL.jpg'])