模型:
Voicelab/herbert-base-cased-sentiment
import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification id2label = {0: "negative", 1: "neutral", 2: "positive"} tokenizer = AutoTokenizer.from_pretrained("Voicelab/herbert-base-cased-sentiment") model = AutoModelForSequenceClassification.from_pretrained("Voicelab/herbert-base-cased-sentiment") input = ["Ale fajnie, spadł dzisiaj śnieg! Ulepimy dziś bałwana?"] encoding = tokenizer( input, add_special_tokens=True, return_token_type_ids=True, truncation=True, padding='max_length', return_attention_mask=True, return_tensors='pt', ) output = model(**encoding).logits.to("cpu").detach().numpy() prediction = id2label[np.argmax(output)] print(input, "--->", prediction)
Predicted output:
['Ale fajnie, spadł dzisiaj śnieg! Ulepimy dziś bałwana?'] ---> positive