模型:
VMware/open-llama-13b-open-instruct
Instruction-tuned version of the fully trained Open LLama 13B model. The model is open for COMMERCIAL USE .
NOTE : The model was trained using the Alpaca prompt template NOTE : Fast tokenizer results in incorrect encoding, set the use_fast = False parameter, when instantiating the tokenizer NOTE : The model might struggle with code as the tokenizer merges multiple spaces
import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = 'VMware/open-llama-13b-open-instruct' tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='sequential') prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:" prompt = 'Explain in simple terms how the attention mechanism of a transformer model works' inputt = prompt_template.format(instruction= prompt) input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda") output1 = model.generate(input_ids, max_length=512) input_length = input_ids.shape[1] output1 = output1[:, input_length:] output = tokenizer.decode(output1[0]) print(output)
The finetuning scripts will be available in our RAIL Github Repository
TODO