模型:
TheBloke/h2ogpt-oasst1-512-30B-HF
Chat & support: my new Discord server
Want to contribute? TheBloke's Patreon page
This is a float16 HF format model files for H2O.ai's h2ogpt-research-oig-oasst1-512-30b .
It is the result of merging their LoRA with base Llama 30B.
For further support, and discussions on these models and AI in general, join us at:
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
Patreon special mentions : Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
Thank you to all my generous patrons and donaters!
H2O.ai's h2oai/h2ogpt-research-oig-oasst1-512-30b is a 30 billion parameter instruction-following large language model for research use only.
Due to the license attached to LLaMA models by Meta AI it is not possible to directly distribute LLaMA-based models. Instead we provide LORA weights.
The model was trained using h2oGPT code as:
torchrun --nproc_per_node=8 finetune.py --base_model=decapoda-research/llama-30b-hf --micro_batch_size=1 --batch_size=8 --cutoff_len=512 --num_epochs=2.0 --val_set_size=0 --eval_steps=100000 --save_steps=17000 --save_total_limit=20 --prompt_type=plain --save_code=True --train_8bit=False --run_id=llama30b_17 --llama_flash_attn=True --lora_r=64 --lora_target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj'] --learning_rate=2e-4 --lora_alpha=32 --drop_truncations=True --data_path=h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v2 --data_mix_in_path=h2oai/openassistant_oasst1_h2ogpt --data_mix_in_factor=1.0 --data_mix_in_prompt_type=plain --data_mix_in_col_dict={'input': 'input'}
On h2oGPT Hash: 131f6d098b43236b5f91e76fc074ad089d6df368
Only the last checkpoint at epoch 2.0 and step 137,846 is provided in this model repository because the LORA state is large enough and there are enough checkpoints to make total run 19GB. Feel free to request additional checkpoints and we can consider adding more.
Use: https://github.com/h2oai/h2ogpt/blob/main/export_hf_checkpoint.py and change:
BASE_MODEL = 'decapoda-research/llama-30b-hf' LORA_WEIGHTS = '<lora_weights_path>' OUTPUT_NAME = "local_h2ogpt-research-oasst1-512-30b"
where <lora_weights_path> is a directory of some name that contains the files in this HF model repository:
Once the HF model is built, to use the model with the transformers library on a machine with GPUs, first make sure you have the transformers and accelerate libraries installed.
pip install transformers==4.28.1 pip install accelerate==0.18.0
import torch from transformers import pipeline generate_text = pipeline(model="local_h2ogpt-research-oasst1-512-30b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"])
Alternatively, if you prefer to not use trust_remote_code=True you can download instruct_pipeline.py , store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("local_h2ogpt-research-oasst1-512-30b", padding_side="left") model = AutoModelForCausalLM.from_pretrained("local_h2ogpt-research-oasst1-512-30b", torch_dtype=torch.bfloat16, device_map="auto") generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"])
PeftModelForCausalLM( (base_model): LoraModel( (model): LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 6656, padding_idx=31999) (layers): ModuleList( (0-59): 60 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear( in_features=6656, out_features=6656, bias=False (lora_dropout): ModuleDict( (default): Dropout(p=0.05, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=6656, out_features=64, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=64, out_features=6656, bias=False) ) ) (k_proj): Linear( in_features=6656, out_features=6656, bias=False (lora_dropout): ModuleDict( (default): Dropout(p=0.05, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=6656, out_features=64, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=64, out_features=6656, bias=False) ) ) (v_proj): Linear( in_features=6656, out_features=6656, bias=False (lora_dropout): ModuleDict( (default): Dropout(p=0.05, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=6656, out_features=64, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=64, out_features=6656, bias=False) ) ) (o_proj): Linear( in_features=6656, out_features=6656, bias=False (lora_dropout): ModuleDict( (default): Dropout(p=0.05, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=6656, out_features=64, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=64, out_features=6656, bias=False) ) ) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=6656, out_features=17920, bias=False) (down_proj): Linear(in_features=17920, out_features=6656, bias=False) (up_proj): Linear(in_features=6656, out_features=17920, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=6656, out_features=32000, bias=False) ) ) ) trainable params: 204472320 || all params: 32733415936 || trainable%: 0.6246592790675496
{ "base_model_name_or_path": "decapoda-research/llama-30b-hf", "bias": "none", "fan_in_fan_out": false, "inference_mode": true, "init_lora_weights": true, "lora_alpha": 32, "lora_dropout": 0.05, "modules_to_save": null, "peft_type": "LORA", "r": 64, "target_modules": [ "q_proj", "k_proj", "v_proj", "o_proj" ], "task_type": "CAUSAL_LM"
Classical benchmarks align with base LLaMa 30B model, but are not useful for conversational purposes. One could use GPT3.5 or GPT4 to evaluate responses, while here we use a RLHF based reward model . This is run using h2oGPT:
python generate.py --base_model=decapoda-research/llama-30b-hf --gradio=False --infer_devices=False --eval_sharegpt_prompts_only=100 --eval_sharegpt_as_output=False --lora_weights=llama-30b-hf.h2oaih2ogpt-oig-oasst1-instruct-cleaned-v2.2.0_epochs.131f6d098b43236b5f91e76fc074ad089d6df368.llama30b_17
So the model gets a reward model score mean of 0.55 and median of 0.58. This compares to our 20B model that gets 0.49 mean and 0.48 median or Dollyv2 that gets 0.37 mean and 0.27 median.
Logs and prompt-response pairs
The full distribution of scores is shown here:
Same plot for our h2oGPT 20B:
Same plot for DB Dollyv2:
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.