模型:
TheBloke/Vicuna-13B-1-3-SuperHOT-8K-GPTQ
Chat & support: my new Discord server
Want to contribute? TheBloke's Patreon page
These files are GPTQ 4bit model files for LmSys' Vicuna 13B 1.3.0 merged with Kaio Ken's SuperHOT 8K .
It is the result of quantising to 4bit using GPTQ-for-LLaMa .
This is an experimental new GPTQ which offers up to 8K context size
The increased context is tested to work with ExLlama , via the latest release of text-generation-webui .
It has also been tested from Python code using AutoGPTQ, and trust_remote_code=True .
Code credits:
Please read carefully below to see how to use it.
GGML versions are not yet provided, as there is not yet support for SuperHOT in llama.cpp. This is being investigated and will hopefully come soon.
A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input USER: prompt ASSISTANT:
Please make sure you're using the latest version of text-generation-webui
First make sure you have AutoGPTQ and Einops installed:
pip3 install einops auto-gptq
Then run the following code. Note that in order to get this to work, config.json has been hardcoded to a sequence length of 8192.
If you want to try 4096 instead to reduce VRAM usage, please manually edit config.json to set max_position_embeddings to the value you want.
from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import argparse model_name_or_path = "TheBloke/Vicuna-13B-1-3-SuperHOT-8K-GPTQ" model_basename = "vicuna-13b-1.3.0-superhot-8k-GPTQ-4bit-128g.no-act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device_map='auto', use_triton=use_triton, quantize_config=None) model.seqlen = 8192 # Note: check the prompt template is correct for this model. prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text'])
Provided in the repo is llama_rope_scaled_monkey_patch.py , written by @kaiokendev.
It can be theoretically be added to any Python UI or custom code to enable the same result as trust_remote_code=True . I have not tested this, and it should be superseded by using trust_remote_code=True , but I include it for completeness and for interest.
vicuna-13b-1.3.0-superhot-8k-GPTQ-4bit-128g.no-act.order.safetensors
This will work with AutoGPTQ, ExLlama, and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
For further support, and discussions on these models and AI in general, join us at:
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
Special thanks to : Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
Patreon special mentions : Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.
Thank you to all my generous patrons and donaters!
This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in the github blog . Tests have shown that the model does indeed leverage the extended context at 8K.
You will need to use either the monkeypatch or, if you are already using the monkeypatch, change the scaling factor to 0.25 and the maximum sequence length to 8192
Looking for Merged & Quantized Models?I trained the LoRA with the following configuration:
Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.
The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights . APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api .
Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning. The training data is around 140K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this paper .
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this paper .