模型:

TheBloke/Nous-Hermes-13B-SuperHOT-8K-GPTQ

中文

Chat & support: my new Discord server

Want to contribute? TheBloke's Patreon page

NousResearch's Nous-Hermes-13B GPTQ

These files are GPTQ 4bit model files for NousResearch's Nous-Hermes-13B merged with Kaio Ken's SuperHOT 8K .

It is the result of quantising to 4bit using GPTQ-for-LLaMa .

This is an experimental new GPTQ which offers up to 8K context size

The increased context is tested to work with ExLlama , via the latest release of text-generation-webui .

It has also been tested from Python code using AutoGPTQ, and trust_remote_code=True .

Code credits:

  • Original concept and code for increasing context length: kaiokendev
  • Updated Llama modelling code that includes this automatically via trust_remote_code: emozilla .

Please read carefully below to see how to use it.

GGML versions are not yet provided, as there is not yet support for SuperHOT in llama.cpp. This is being investigated and will hopefully come soon.

Repositories available

How to easily download and use this model in text-generation-webui with ExLlama

Please make sure you're using the latest version of text-generation-webui

  • Click the Model tab .
  • Under Download custom model or LoRA , enter TheBloke/Nous-Hermes-13B-SuperHOT-8K-GPTQ .
  • Click Download .
  • The model will start downloading. Once it's finished it will say "Done"
  • Untick Autoload the model
  • In the top left, click the refresh icon next to Model .
  • In the Model dropdown, choose the model you just downloaded: Nous-Hermes-13B-SuperHOT-8K-GPTQ
  • To use the increased context, set the Loader to ExLlama , set max_seq_len to 8192 or 4096, and set compress_pos_emb to 4 for 8192 context, or to 2 for 4096 context.
  • Now click Save Settings followed by Reload
  • The model will automatically load, and is now ready for use!
  • Once you're ready, click the Text Generation tab and enter a prompt to get started!
  • How to use this GPTQ model from Python code with AutoGPTQ

    First make sure you have AutoGPTQ and Einops installed:

    pip3 install einops auto-gptq
    

    Then run the following code. Note that in order to get this to work, config.json has been hardcoded to a sequence length of 8192.

    If you want to try 4096 instead to reduce VRAM usage, please manually edit config.json to set max_position_embeddings to the value you want.

    from transformers import AutoTokenizer, pipeline, logging
    from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
    import argparse
    
    model_name_or_path = "TheBloke/Nous-Hermes-13B-SuperHOT-8K-GPTQ"
    model_basename = "nous-hermes-13b-superhot-8k-GPTQ-4bit-128g.no-act.order"
    
    use_triton = False
    
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
    
    model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
            model_basename=model_basename,
            use_safetensors=True,
            trust_remote_code=True,
            device_map='auto',
            use_triton=use_triton,
            quantize_config=None)
    
    model.seqlen = 8192
    
    # Note: check the prompt template is correct for this model.
    prompt = "Tell me about AI"
    prompt_template=f'''USER: {prompt}
    ASSISTANT:'''
    
    print("\n\n*** Generate:")
    
    input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
    output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
    print(tokenizer.decode(output[0]))
    
    # Inference can also be done using transformers' pipeline
    
    # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
    logging.set_verbosity(logging.CRITICAL)
    
    print("*** Pipeline:")
    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.95,
        repetition_penalty=1.15
    )
    
    print(pipe(prompt_template)[0]['generated_text'])
    

    Using other UIs: monkey patch

    Provided in the repo is llama_rope_scaled_monkey_patch.py , written by @kaiokendev.

    It can be theoretically be added to any Python UI or custom code to enable the same result as trust_remote_code=True . I have not tested this, and it should be superseded by using trust_remote_code=True , but I include it for completeness and for interest.

    Provided files

    nous-hermes-13b-superhot-8k-GPTQ-4bit-128g.no-act.order.safetensors

    This will work with AutoGPTQ, ExLlama, and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.

    It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.

    • nous-hermes-13b-superhot-8k-GPTQ-4bit-128g.no-act.order.safetensors
      • Works for use with ExLlama with increased context (4096 or 8192)
      • Works with AutoGPTQ in Python code, including with increased context, if trust_remote_code=True is set.
      • Should work with GPTQ-for-LLaMa in CUDA mode, but unknown if increased context works - TBC. May have issues with GPTQ-for-LLaMa Triton mode.
      • Works with text-generation-webui, including one-click-installers.
      • Parameters: Groupsize = 128. Act Order / desc_act = False.

    Discord

    For further support, and discussions on these models and AI in general, join us at:

    TheBloke AI's Discord server

    Thanks, and how to contribute.

    Thanks to the chirper.ai team!

    I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

    If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

    Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

    Special thanks to : Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.

    Patreon special mentions : Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.

    Thank you to all my generous patrons and donaters!

    Original model card: Kaio Ken's SuperHOT 8K

    SuperHOT Prototype 2 w/ 8K Context

    This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in the github blog . Tests have shown that the model does indeed leverage the extended context at 8K.

    You will need to use either the monkeypatch or, if you are already using the monkeypatch, change the scaling factor to 0.25 and the maximum sequence length to 8192

    Looking for Merged & Quantized Models? Training Details

    I trained the LoRA with the following configuration:

    • 1200 samples (~400 samples over 2048 sequence length)
    • learning rate of 3e-4
    • 3 epochs
    • The exported modules are:
      • q_proj
      • k_proj
      • v_proj
      • o_proj
      • no bias
    • Rank = 4
    • Alpha = 8
    • no dropout
    • weight decay of 0.1
    • AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
    • Trained on 4-bit base model

    Original model card: NousResearch's Nous-Hermes-13B

    Model Card: Nous-Hermes-13b

    Model Description

    Nous-Hermes-13b is a state-of-the-art language model fine-tuned on over 300,000 instructions. This model was fine-tuned by Nous Research, with Teknium and Karan4D leading the fine tuning process and dataset curation, Redmond AI sponsoring the compute, and several other contributors. The result is an enhanced Llama 13b model that rivals GPT-3.5-turbo in performance across a variety of tasks.

    This model stands out for its long responses, low hallucination rate, and absence of OpenAI censorship mechanisms. The fine-tuning process was performed with a 2000 sequence length on an 8x a100 80GB DGX machine for over 50 hours.

    Model Training

    The model was trained almost entirely on synthetic GPT-4 outputs. This includes data from diverse sources such as GPTeacher, the general, roleplay v1&2, code instruct datasets, Nous Instruct & PDACTL (unpublished), CodeAlpaca, Evol_Instruct Uncensored, GPT4-LLM, and Unnatural Instructions.

    Additional data inputs came from Camel-AI's Biology/Physics/Chemistry and Math Datasets, Airoboros' GPT-4 Dataset, and more from CodeAlpaca. The total volume of data encompassed over 300,000 instructions.

    Collaborators

    The model fine-tuning and the datasets were a collaboration of efforts and resources between Teknium, Karan4D, Nous Research, Huemin Art, and Redmond AI.

    Huge shoutout and acknowledgement is deserved for all the dataset creators who generously share their datasets openly.

    Special mention goes to @winglian, @erhartford, and @main_horse for assisting in some of the training issues.

    Among the contributors of datasets, GPTeacher was made available by Teknium, Wizard LM by nlpxucan, and the Nous Research Instruct Dataset was provided by Karan4D and HueminArt. The GPT4-LLM and Unnatural Instructions were provided by Microsoft, Airoboros dataset by jondurbin, Camel-AI datasets are from Camel-AI, and CodeAlpaca dataset by Sahil 2801. If anyone was left out, please open a thread in the community tab.

    Prompt Format

    The model follows the Alpaca prompt format:

    ### Instruction:
    
    ### Response:
    

    or

    ### Instruction:
    
    ### Input:
    
    ### Response:
    

    Resources for Applied Use Cases:

    For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord For an example of a roleplaying discord bot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot

    Future Plans

    The model is currently being uploaded in FP16 format, and there are plans to convert the model to GGML and GPTQ 4bit quantizations. The team is also working on a full benchmark, similar to what was done for GPT4-x-Vicuna. We will try to get in discussions to get the model included in the GPT4All.

    Benchmark Results

    |    Task     |Version| Metric |Value |   |Stderr|
    |-------------|------:|--------|-----:|---|-----:|
    |arc_challenge|      0|acc     |0.4915|±  |0.0146|
    |             |       |acc_norm|0.5085|±  |0.0146|
    |arc_easy     |      0|acc     |0.7769|±  |0.0085|
    |             |       |acc_norm|0.7424|±  |0.0090|
    |boolq        |      1|acc     |0.7948|±  |0.0071|
    |hellaswag    |      0|acc     |0.6143|±  |0.0049|
    |             |       |acc_norm|0.8000|±  |0.0040|
    |openbookqa   |      0|acc     |0.3560|±  |0.0214|
    |             |       |acc_norm|0.4640|±  |0.0223|
    |piqa         |      0|acc     |0.7965|±  |0.0094|
    |             |       |acc_norm|0.7889|±  |0.0095|
    |winogrande   |      0|acc     |0.7190|±  |0.0126|
    

    These benchmarks currently have us at #1 on ARC-c, ARC-e, Hellaswag, and OpenBookQA, and 2nd place on Winogrande, comparing to GPT4all's benchmarking list.

    Model Usage

    The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions.

    Compute provided by our project sponsor Redmond AI, thank you!!