中文

swin-tiny-patch4-window7-224-shortSleeveCleanedData

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0355
  • Accuracy: 0.9945

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 7
  • total_train_batch_size: 56
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1819 1.0 147 0.0471 0.9880
0.1431 2.0 294 0.0457 0.9891
0.1001 3.0 441 0.0392 0.9891
0.116 4.0 588 0.0451 0.9880
0.1144 5.0 735 0.0398 0.9902
0.0787 6.0 882 0.0441 0.9902
0.0998 7.0 1029 0.0320 0.9902
0.124 8.0 1176 0.0364 0.9902
0.103 9.0 1323 0.0395 0.9880
0.0591 10.0 1470 0.0299 0.9913
0.0445 11.0 1617 0.0302 0.9913
0.0684 12.0 1764 0.0350 0.9880
0.0358 13.0 1911 0.0408 0.9891
0.0548 14.0 2058 0.0382 0.9902
0.0611 15.0 2205 0.0331 0.9923
0.0231 16.0 2352 0.0355 0.9945
0.046 17.0 2499 0.0321 0.9934
0.0648 18.0 2646 0.0327 0.9923
0.0565 19.0 2793 0.0320 0.9923
0.0413 20.0 2940 0.0327 0.9923

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3