模型:
Salesforce/blip-vqa-capfilt-large
模型卡片:基于大型架构的BLIP模型在视觉问答任务上进行了训练(使用了ViT大型骨干)。
Pull figure from BLIP official repo |
摘要中来自 paper 的作者写道:
视觉-语言预训练(VLP)已经提高了许多视觉-语言任务的性能。然而,现有的大多数预训练模型只在理解型任务或生成型任务中表现出色。此外,通过扩大使用从网络中收集到的含有噪音的图像文本对的数据集,实现了性能的大幅提升,但这种方式并不是最优的监督来源。在本文中,我们提出了BLIP,这是一种新的VLP框架,能够灵活应用于视觉-语言理解和生成任务。BLIP通过引导生成标题,有效地利用了网络数据中的噪音,其中一个标题生成器生成合成标题,然后通过一个过滤器来去除噪音标题。我们在广泛的视觉-语言任务中取得了最先进的结果,如图像文本检索(平均召回率@1提高了2.7%)、图像字幕(CIDEr提高了2.8%)和视觉问答(VQA评分提高了1.6%)。BLIP还展示了强大的泛化能力,可以直接以零-shot方式转移到视频-语言任务中。代码、模型和数据集已经发布。
您可以使用此模型进行有条件和无条件的图像字幕生成。
import requests from PIL import Image from transformers import BlipProcessor, BlipForQuestionAnswering processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large ") model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large ") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) >>> 1在GPU上运行模型 在完整精度下运行 点击展开
import requests from PIL import Image from transformers import BlipProcessor, BlipForQuestionAnswering processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large") model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large").to("cuda") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) >>> 1在半精度(float16)下运行 点击展开
import torch import requests from PIL import Image from transformers import BlipProcessor, BlipForQuestionAnswering processor = BlipProcessor.from_pretrained("ybelkada/blip-vqa-capfilt-large") model = BlipForQuestionAnswering.from_pretrained("ybelkada/blip-vqa-capfilt-large", torch_dtype=torch.float16).to("cuda") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) >>> 1
@misc{https://doi.org/10.48550/arxiv.2201.12086, doi = {10.48550/ARXIV.2201.12086}, url = {https://arxiv.org/abs/2201.12086}, author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} }