中文

Deberta for Financial Sentiment Classification

I use a Deberta model trained on over 1 million reviews from Amazon's multi-reviews dataset and finetune it on 4 finance datasets that are categorized with Sentiment labels. The datasets I use are

  • financial_phrasebank
  • chiapudding/kaggle-financial-sentiment
  • zeroshot/twitter-financial-news-sentiment
  • FinanceInc/auditor_sentiment
  • How to use the model

    import torch
    from transformers import AutoModelForSequenceClassification, AutoTokenizer
    
    def get_sentiment(sentences):
        bert_dict = {}
        vectors = tokenizer(sentences, padding = True, max_length = 65, return_tensors='pt').to(device)
        outputs = bert_model(**vectors).logits
        probs = torch.nn.functional.softmax(outputs, dim = 1)
        for prob in probs:
            bert_dict['neg'] = round(prob[0].item(), 3)
            bert_dict['neu'] = round(prob[1].item(), 3)
            bert_dict['pos'] = round(prob[2].item(), 3)
            print (bert_dict)
    
    MODEL_NAME = 'RashidNLP/Finance-Sentiment-Classification'
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    bert_model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 3).to(device)
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    
    get_sentiment(["The stock market will struggle until debt ceiling is increased", "ChatGPT is boosting Microsoft's search engine market share"])