模型:
RashidNLP/Finance-Sentiment-Classification
I use a Deberta model trained on over 1 million reviews from Amazon's multi-reviews dataset and finetune it on 4 finance datasets that are categorized with Sentiment labels. The datasets I use are
import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer def get_sentiment(sentences): bert_dict = {} vectors = tokenizer(sentences, padding = True, max_length = 65, return_tensors='pt').to(device) outputs = bert_model(**vectors).logits probs = torch.nn.functional.softmax(outputs, dim = 1) for prob in probs: bert_dict['neg'] = round(prob[0].item(), 3) bert_dict['neu'] = round(prob[1].item(), 3) bert_dict['pos'] = round(prob[2].item(), 3) print (bert_dict) MODEL_NAME = 'RashidNLP/Finance-Sentiment-Classification' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') bert_model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 3).to(device) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) get_sentiment(["The stock market will struggle until debt ceiling is increased", "ChatGPT is boosting Microsoft's search engine market share"])