模型:
OpenAssistant/pythia-12b-pre-v8-12.5k-steps
Note: internal model, not ready for use
This is an intermediate model used as base-model for further pythia 12b SFT-8 experiments. It was trained on a wider set of instruction-tuning datasets for >12.5k steps with batch-size 128 and a context size of 2048. The gpt4all dataset had "as a language model" contamination (>1.8k entries). We added filtering later, but this model (pre-v8) was trained on the raw unfildered gpt4all dataset.
Datasets:
pretrain: num_train_epochs: 1 weight_decay: 0.0 use_custom_sampler: true sort_by_length: false datasets: - gpteacher_roleplay: val_split: 0.05 - red_pajama: fraction: 0.25 max_val_set: 1000 - wizardlm_70k: val_split: 0.05 max_val_set: 500 - joke: val_split: 0.05 - poem_instructions: val_split: 0.025 - oa_stackexchange: val_split: 0.05 fraction: 0.1 max_val_set: 1000 - tell_a_joke: val_split: 0.05 max_val_set: 250 - webgpt: val_split: 0.05 max_val_set: 250 - gpt4all: val_split: 0.01 max_val_set: 1000 - alpaca_gpt4: val_split: 0.025 max_val_set: 250 - code_alpaca: val_split: 0.05 max_val_set: 250 - vicuna: max_val_set: 250 - oig_file: source_url: https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl max_count: 10000 min_length: 250 val_split: 0.05 max_val_set: 250 - minimath: val_split: 0.05 - humaneval_mbpp_codegen_qa: val_split: 0.05 - humaneval_mbpp_testgen_qa: val_split: 0.05 - grade_school_math_instructions: val_split: 0.05 - recipes: val_split: 0.05 - cmu_wiki_qa: val_split: 0.05 - oa_wiki_qa_bart_10000row: val_split: 0.05 max_val_set: 250 - prosocial_dialogue: fraction: 0.1 max_val_set: 250 - explain_prosocial: fraction: 0.075 max_val_set: 250 - soda: fraction: 0.25 max_val_set: 1000 - oa_leet10k: val_split: 0.05 max_val_set: 250 - dolly15k: val_split: 0.05 max_val_set: 300
Pythia:
pythia-12b-pretrain: dtype: fp16 log_dir: "pythia_log_12b" learning_rate: 6e-6 model_name: EleutherAI/pythia-12b-deduped output_dir: pythia_model_12b weight_decay: 0.0 max_length: 2048 warmup_steps: 100 gradient_checkpointing: true gradient_accumulation_steps: 4 per_device_train_batch_size: 4 per_device_eval_batch_size: 4 eval_steps: 251 save_steps: 500 num_train_epochs: 1 save_total_limit: 2 deepspeed_config: configs/zero_config_pretrain.json
Command used: deepspeed trainer_sft.py --show_dataset_stats --configs defaults pythia-12b-pretrain pretrain --cache_dir .cache/ --output_dir .saved/pythia-12b-super-pretrain2 --deepspeed