模型:
OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
这是 Open-Assistant 项目的第四次迭代的英文有监督微调(SFT)模型。它基于一个在2023年3月25日之前通过 https://open-assistant.io/ 人工反馈网络应用程序收集的助手对话的人类演示进行了微调。
两个特殊的标记用于标记用户和助手的回合的开始:<|prompter|>和<|assistant|>。每个回合以<|endoftext|>标记结束。
输入提示示例:
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
输入以<|assistant|>标记结尾,表示模型应开始生成助手的回复。
命令:deepspeed trainer_sft.py --configs defaults reference-data reference-pythia-12b --cache_dir /home/ubuntu/data_cache --output_dir .saved/oasst-sft-3-pythia-12b-reference_2kpre --num_train_epochs 8 --residual_dropout 0.2 --deepspeed --use_flash_attention true --model_name andreaskoepf/pythia-12b-pre-2000
数据:
reference-data: datasets: - oasst_export: lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" input_file_path: 2023-03-25_oasst_research_ready_synth_labels.jsonl.gz val_split: 0.05 - alpaca sort_by_length: false use_custom_sampler: false
pythia:
reference-pythia-12b: dtype: fp16 log_dir: "pythia_log_12b" learning_rate: 6e-6 model_name: EleutherAI/pythia-12b-deduped output_dir: pythia_model_12b weight_decay: 0.0 max_length: 2048 warmup_steps: 100 gradient_checkpointing: true gradient_accumulation_steps: 2 per_device_train_batch_size: 4 per_device_eval_batch_size: 4 eval_steps: 100 save_steps: 1000 num_train_epochs: 8 save_total_limit: 4
零配置:
{ "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto", "total_num_steps": "auto" } }, "zero_optimization": { "stage": 2, "allgather_partitions": true, "allgather_bucket_size": 1e9, "overlap_comm": false, "reduce_scatter": true, "reduce_bucket_size": 1e9, "contiguous_gradients": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }