模型:
OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
这是 Open-Assistant 项目的第四次迭代的英文有监督微调(SFT)模型。它基于一个在2023年3月25日之前通过 https://open-assistant.io/ 人工反馈网络应用程序收集的助手对话的人类演示进行了微调。
两个特殊的标记用于标记用户和助手的回合的开始:<|prompter|>和<|assistant|>。每个回合以<|endoftext|>标记结束。
输入提示示例:
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
输入以<|assistant|>标记结尾,表示模型应开始生成助手的回复。
命令:deepspeed trainer_sft.py --configs defaults reference-data reference-pythia-12b --cache_dir /home/ubuntu/data_cache --output_dir .saved/oasst-sft-3-pythia-12b-reference_2kpre --num_train_epochs 8 --residual_dropout 0.2 --deepspeed --use_flash_attention true --model_name andreaskoepf/pythia-12b-pre-2000
数据:
reference-data:
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
input_file_path: 2023-03-25_oasst_research_ready_synth_labels.jsonl.gz
val_split: 0.05
- alpaca
sort_by_length: false
use_custom_sampler: false
pythia:
reference-pythia-12b: dtype: fp16 log_dir: "pythia_log_12b" learning_rate: 6e-6 model_name: EleutherAI/pythia-12b-deduped output_dir: pythia_model_12b weight_decay: 0.0 max_length: 2048 warmup_steps: 100 gradient_checkpointing: true gradient_accumulation_steps: 2 per_device_train_batch_size: 4 per_device_eval_batch_size: 4 eval_steps: 100 save_steps: 1000 num_train_epochs: 8 save_total_limit: 4
零配置:
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"total_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 1e9,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 1e9,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}