模型:
Norod78/sd2-simpsons-blip
*Stable Diffusion v2.0 fine tuned on images related to "The Simpsons"
If you want more details on how to generate your own blip cpationed dataset see this colab
Training was done using a slightly modified version of Hugging-Face's text to image training example script
Put in a text prompt and generate cartoony/simpsony images
The main folder contains a .ckpt and a .yaml file to be put in stable-diffusion-webui "stable-diffusion-webui/models/Stable-diffusion" folder and used to generate images
from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler import torch # this will substitute the default PNDM scheduler for K-LMS lms = LMSDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) guidance_scale=8.5 seed=777 steps=50 cartoon_model_path = "Norod78/sd2-simpsons-blip" cartoon_pipe = StableDiffusionPipeline.from_pretrained(cartoon_model_path, scheduler=lms, torch_dtype=torch.float16) cartoon_pipe.to("cuda") def generate(prompt, file_prefix ,samples): torch.manual_seed(seed) prompt += ", Very detailed, clean, high quality, sharp image" cartoon_images = cartoon_pipe([prompt] * samples, num_inference_steps=steps, guidance_scale=guidance_scale)["images"] for idx, image in enumerate(cartoon_images): image.save(f"{file_prefix}-{idx}-{seed}-sd2-simpsons-blip.jpg") generate("An oil painting of Snoop Dogg as a simpsons character", "01_SnoopDog", 4) generate("Gal Gadot, cartoon", "02_GalGadot", 4) generate("A cartoony Simpsons town", "03_SimpsonsTown", 4) generate("Pikachu with the Simpsons, Eric Wallis", "04_PikachuSimpsons", 4)
Finetuned for 10,000 iterations upon stabilityai/stable-diffusion-2-base on BLIP captioned Simpsons images using 1xA5000 GPU on my home desktop computer
Trained by @Norod78