模型:

NYTK/sentiment-hts5-xlm-roberta-hungarian

中文

Hungarian Sentence-level Sentiment Analysis Model with XLM-RoBERTa

For further models, scripts and details, see our repository or our demo site .

  • Pretrained model used: XLM-RoBERTa base
  • Finetuned on Hungarian Twitter Sentiment (HTS) Corpus
  • Labels: 0 (very negative), 1 (negative), 2 (neutral), 3 (positive), 4 (very positive)

Limitations

  • max_seq_length = 128

Results

Model HTS2 HTS5
huBERT 85.56 68.99
XLM-RoBERTa 85.56 66.50

Citation

If you use this model, please cite the following paper:

@inproceedings {laki-yang-sentiment,
    title = {Improving Performance of Sentence-level Sentiment Analysis with Data Augmentation Methods},
    booktitle = {Proceedings of 12th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2021)},
    year = {2021},
    publisher = {IEEE},
    address = {Online},
    author = {Laki, László and Yang, Zijian Győző}
    pages = {417--422}
}