このモデルは8つの感情(喜び、悲しみ、期待、驚き、怒り、恐れ、嫌悪、信頼)の内、どの感情が文章に含まれているのか分析することができます。 このモデルはwrimeデータセット( https://huggingface.co/datasets/shunk031/wrime )を用いて学習を行いました。
This model is fine-tuned model which besed on studio-ousia/Luke-japanese-large-lite. This could be able to analyze which emotions (joy or sadness or anticipation or surprise or anger or fear or disdust or trust ) are included. This model was fine-tuned by using wrime dataset.
LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transformer. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. LUKE adopts an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores.
LUKE achieves state-of-the-art results on five popular NLP benchmarks including SQuAD v1.1 (extractive question answering), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), TACRED (relation classification), and Open Entity (entity typing). luke-japaneseは、単語とエンティティの知識拡張型訓練済み Transformer モデルLUKEの日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。
ステップ1:pythonとpytorch, sentencepieceのインストールとtransformersのアップデート(バージョンが古すぎるとLukeTokenizerが入っていないため) update transformers and install sentencepiece, python and pytorch
ステップ2:下記のコードを実行する Please execute this code
from transformers import AutoTokenizer, AutoModelForSequenceClassification, LukeConfig import torch tokenizer = AutoTokenizer.from_pretrained("Mizuiro-sakura/luke-japanese-large-sentiment-analysis-wrime") config = LukeConfig.from_pretrained('Mizuiro-sakura/luke-japanese-large-sentiment-analysis-wrime', output_hidden_states=True) model = AutoModelForSequenceClassification.from_pretrained('Mizuiro-sakura/luke-japanese-large-sentiment-analysis-wrime', config=config) text='すごく楽しかった。また行きたい。' max_seq_length=512 token=tokenizer(text, truncation=True, max_length=max_seq_length, padding="max_length") output=model(torch.tensor(token['input_ids']).unsqueeze(0), torch.tensor(token['attention_mask']).unsqueeze(0)) max_index=torch.argmax(torch.tensor(output.logits)) if max_index==0: print('joy、うれしい') elif max_index==1: print('sadness、悲しい') elif max_index==2: print('anticipation、期待') elif max_index==3: print('surprise、驚き') elif max_index==4: print('anger、怒り') elif max_index==5: print('fear、恐れ') elif max_index==6: print('disgust、嫌悪') elif max_index==7: print('trust、信頼')
Lukeの開発者である山田先生とStudio ousiaさんには感謝いたします。 I would like to thank Mr.Yamada @ikuyamada and Studio ousia @StudioOusia.
[1]@inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} }