模型:
MCG-NJU/videomae-base-ssv2
任务:
视频分类许可:
cc-by-nc-4.0VideoMAE model pre-trained on Something-Something-v2 for 2400 epochs in a self-supervised way. It was introduced in the paper VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training by Tong et al. and first released in this repository .
Disclaimer: The team releasing VideoMAE did not write a model card for this model so this model card has been written by the Hugging Face team.
VideoMAE is an extension of Masked Autoencoders (MAE) to video. The architecture of the model is very similar to that of a standard Vision Transformer (ViT), with a decoder on top for predicting pixel values for masked patches.
Videos are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds fixed sinus/cosinus position embeddings before feeding the sequence to the layers of the Transformer encoder.
By pre-training the model, it learns an inner representation of videos that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled videos for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire video.
You can use the raw model for predicting pixel values for masked patches of a video, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you.
Here is how to use this model to predict pixel values for randomly masked patches:
from transformers import VideoMAEFeatureExtractor, VideoMAEForPreTraining import numpy as np import torch num_frames = 16 video = list(np.random.randn(16, 3, 224, 224)) feature_extractor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base-short-ssv2") model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short-ssv2") pixel_values = feature_extractor(video, return_tensors="pt").pixel_values num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2 seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool() outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) loss = outputs.loss
For more code examples, we refer to the documentation .
(to do, feel free to open a PR)
(to do, feel free to open a PR)
(to do, feel free to open a PR)
(to do, feel free to open a PR)
misc{https://doi.org/10.48550/arxiv.2203.12602, doi = {10.48550/ARXIV.2203.12602}, url = {https://arxiv.org/abs/2203.12602}, author = {Tong, Zhan and Song, Yibing and Wang, Jue and Wang, Limin}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} }