模型:
Kirili4ik/ruDialoGpt3-medium-finetuned-telegram
DialoGPT trained on Russian language and fine tuned on my telegram chat.
This model was created by sberbank-ai and trained on Russian forums (see Grossmend's model ). You can find info about how it has been trained on habr (in Russian). I have created a simple pipeline and fine tuned that model on my own exported telegram chat (~30mb json). It is in fact very easy to get the data from telegram and fine tune a model. Therefore, I made a colab tutorial for it: https://colab.research.google.com/drive/1fnAVURjyZRK9VQg1Co_-SKUQnRES8l9R?usp=sharing
⚠️ Due to specifics of the data Hosted inference API may not work properly ⚠️
?To try it use my Spaces demo ?
# Download model and tokenizer checkpoint = "Kirili4ik/ruDialoGpt3-medium-finetuned-telegram" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) model.eval() # util function to get expected len after tokenizing def get_length_param(text: str, tokenizer) -> str: tokens_count = len(tokenizer.encode(text)) if tokens_count <= 15: len_param = '1' elif tokens_count <= 50: len_param = '2' elif tokens_count <= 256: len_param = '3' else: len_param = '-' return len_param # util function to get next person number (1/0) for Machine or Human in the dialogue def get_user_param(text: dict, machine_name_in_chat: str) -> str: if text['from'] == machine_name_in_chat: return '1' # machine else: return '0' # human chat_history_ids = torch.zeros((1, 0), dtype=torch.int) while True: next_who = input("Who's phrase?\t") #input("H / G?") # Human or GPT # In case Human if next_who == "H" or next_who == "Human": input_user = input("===> Human: ") # encode the new user input, add parameters and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(f"|0|{get_length_param(input_user, tokenizer)}|" \ + input_user + tokenizer.eos_token, return_tensors="pt") # append the new user input tokens to the chat history chat_history_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if next_who == "G" or next_who == "GPT": next_len = input("Phrase len? 1/2/3/-\t") #input("Exp. len?(-/1/2/3): ") # encode the new user input, add parameters and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(f"|1|{next_len}|", return_tensors="pt") # append the new user input tokens to the chat history chat_history_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) # print(tokenizer.decode(chat_history_ids[-1])) # uncomment to see full gpt input # save previous len input_len = chat_history_ids.shape[-1] # generated a response; PS you can read about the parameters at hf.co/blog/how-to-generate chat_history_ids = model.generate( chat_history_ids, num_return_sequences=1, # use for more variants, but have to print [i] max_length=512, no_repeat_ngram_size=3, do_sample=True, top_k=50, top_p=0.9, temperature = 0.6, # 0 for greedy mask_token_id=tokenizer.mask_token_id, eos_token_id=tokenizer.eos_token_id, unk_token_id=tokenizer.unk_token_id, pad_token_id=tokenizer.pad_token_id, device='cpu' ) # pretty print last ouput tokens from bot print(f"===> GPT-3: {tokenizer.decode(chat_history_ids[:, input_len:][0], skip_special_tokens=True)}")