模型:
KBLab/wav2vec2-large-xlsr-53-swedish
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the NST Swedish Dictation . When using this model, make sure that your speech input is sampled at 16kHz.
The model can be used directly (without a language model) as follows:
import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2])
The model can be evaluated as follows on the Swedish test data of Common Voice.
import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish") model.to("cuda") chars_to_ignore_regex = '[,?.!\\-;:"“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]])))
WER : 14.298610% CER : 4.925294%
First the XLSR model was further pre-trained for 50 epochs with a corpus consisting of 1000 hours spoken Swedish from various radio stations. Secondly NST Swedish Dictation was used for fine tuning as well as Common Voice . Lastly only Common Voice dataset was used for final finetuning. The Fairseq scripts were used.