模型:
Intel/dpt-hybrid-midas
Dense Prediction Transformer(DPT)模型是在140万张图像上进行单眼深度估计训练的。它由Ranftl等人在2021年的论文 Vision Transformers for Dense Prediction 中提出,并于 this repository 首次发布。DPT使用视觉Transformer(ViT)作为主干网络,然后在其上添加了颈部和头部用于单眼深度估计。
本存储库托管了论文中所述的“混合”版本的模型。DPT-Hybrid与DPT有所不同,它使用 ViT-hybrid 作为主干网络,并从主干网络中提取了一些激活。
模型卡片由Hugging Face团队和Intel共同撰写。
Model Detail | Description |
---|---|
Model Authors - Company | Intel |
Date | December 22, 2022 |
Version | 1 |
Type | Computer Vision - Monocular Depth Estimation |
Paper or Other Resources | 1236321 and 1237321 |
License | Apache 2.0 |
Questions or Comments | 1238321 and 1239321 |
Intended Use | Description |
---|---|
Primary intended uses | You can use the raw model for zero-shot monocular depth estimation. See the 12310321 to look for fine-tuned versions on a task that interests you. |
Primary intended users | Anyone doing monocular depth estimation |
Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task. The model should not be used to intentionally create hostile or alienating environments for people. |
这是如何在图像上进行零样本深度估计的模型使用方法:
from PIL import Image import numpy as np import requests import torch from transformers import DPTForDepthEstimation, DPTFeatureExtractor model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas", low_cpu_mem_usage=True) feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) # prepare image for the model inputs = feature_extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) # visualize the prediction output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") depth = Image.fromarray(formatted) depth.show()
更多的代码示例,请参考 documentation 。
Factors | Description |
---|---|
Groups | Multiple datasets compiled together |
Instrumentation | - |
Environment | Inference completed on Intel Xeon Platinum 8280 CPU @ 2.70GHz with 8 physical cores and an NVIDIA RTX 2080 GPU. |
Card Prompts | Model deployment on alternate hardware and software will change model performance |
Metrics | Description |
---|---|
Model performance measures | Zero-shot Transfer |
Decision thresholds | - |
Approaches to uncertainty and variability | - |
Training and Evaluation Data | Description |
---|---|
Datasets | The dataset is called MIX 6, and contains around 1.4M images. The model was initialized with ImageNet-pretrained weights. |
Motivation | To build a robust monocular depth prediction network |
Preprocessing | "We resize the image such that the longer side is 384 pixels and train on random square crops of size 384. ... We perform random horizontal flips for data augmentation." See 12312321 for more details. |
Model | Training set | DIW WHDR | ETH3D AbsRel | Sintel AbsRel | KITTI δ>1.25 | NYU δ>1.25 | TUM δ>1.25 |
---|---|---|---|---|---|---|---|
DPT - Large | MIX 6 | 10.82 (-13.2%) | 0.089 (-31.2%) | 0.270 (-17.5%) | 8.46 (-64.6%) | 8.32 (-12.9%) | 9.97 (-30.3%) |
DPT - Hybrid | MIX 6 | 11.06 (-11.2%) | 0.093 (-27.6%) | 0.274 (-16.2%) | 11.56 (-51.6%) | 8.69 (-9.0%) | 10.89 (-23.2%) |
MiDaS | MIX 6 | 12.95 (+3.9%) | 0.116 (-10.5%) | 0.329 (+0.5%) | 16.08 (-32.7%) | 8.71 (-8.8%) | 12.51 (-12.5%) |
MiDaS [30] | MIX 5 | 12.46 | 0.129 | 0.327 | 23.90 | 9.55 | 14.29 |
Li [22] | MD [22] | 23.15 | 0.181 | 0.385 | 36.29 | 27.52 | 29.54 |
Li [21] | MC [21] | 26.52 | 0.183 | 0.405 | 47.94 | 18.57 | 17.71 |
Wang [40] | WS [40] | 19.09 | 0.205 | 0.390 | 31.92 | 29.57 | 20.18 |
Xian [45] | RW [45] | 14.59 | 0.186 | 0.422 | 34.08 | 27.00 | 25.02 |
Casser [5] | CS [8] | 32.80 | 0.235 | 0.422 | 21.15 | 39.58 | 37.18 |
表1. 在单目深度估计上与现有技术的比较。我们根据[30]中定义的协议,评估了零样本跨数据集的迁移。相对性能是相对于原始MiDaS模型[30]计算的。所有指标越低越好。( Ranftl et al., 2021 )
Ethical Considerations | Description |
---|---|
Data | The training data come from multiple image datasets compiled together. |
Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of monocular depth image datasets. |
Mitigations | No additional risk mitigation strategies were considered during model development. |
Risks and harms | The extent of the risks involved by using the model remain unknown. |
Use cases | - |
Caveats and Recommendations |
---|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. |
@article{DBLP:journals/corr/abs-2103-13413, author = {Ren{\'{e}} Ranftl and Alexey Bochkovskiy and Vladlen Koltun}, title = {Vision Transformers for Dense Prediction}, journal = {CoRR}, volume = {abs/2103.13413}, year = {2021}, url = {https://arxiv.org/abs/2103.13413}, eprinttype = {arXiv}, eprint = {2103.13413}, timestamp = {Wed, 07 Apr 2021 15:31:46 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2103-13413.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }