模型:
FredZhang7/distilgpt2-stable-diffusion
DistilGPT2 Stable Diffusion is a text generation model used to generate creative and coherent prompts for text-to-image models, given any text. This model was finetuned on 2.03 million descriptive stable diffusion prompts from Stable Diffusion discord , Lexica.art , and (my hand-picked) Krea.ai . I filtered the hand-picked prompts based on the output results from Stable Diffusion v1.4.
Compared to other prompt generation models using GPT2, this one runs with 50% faster forwardpropagation and 40% less disk space & RAM.
pip install --upgrade transformers
from transformers import GPT2Tokenizer, GPT2LMHeadModel # load the pretrained tokenizer tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') tokenizer.add_special_tokens({'pad_token': '[PAD]'}) tokenizer.max_len = 512 # load the fine-tuned model model = GPT2LMHeadModel.from_pretrained('FredZhang7/distilgpt2-stable-diffusion') # generate text using fine-tuned model from transformers import pipeline nlp = pipeline('text-generation', model=model, tokenizer=tokenizer) ins = "a beautiful city" # generate 10 samples outs = nlp(ins, max_length=80, num_return_sequences=10) # print the 10 samples for i in range(len(outs)): outs[i] = str(outs[i]['generated_text']).replace(' ', '') print('\033[96m' + ins + '\033[0m') print('\033[93m' + '\n\n'.join(outs) + '\033[0m')
Example Output: