模型:
DeepPavlov/roberta-large-winogrande
This model was fine-tuned on Winogrande dataset (XL size) in sequence classification task format, meaning that original pairs of sentences with corresponding options filled in were separated, shuffled and classified independently of each other.
WinoGrande-XL reformatted the following way:
For example,
{ "answer": "2", "option1": "plant", "option2": "urn", "sentence": "The plant took up too much room in the urn, because the _ was small." }
becomes
{ "sentence1": "The plant took up too much room in the urn, because the ", "sentence2": "plant was small.", "label": false }
and
{ "sentence1": "The plant took up too much room in the urn, because the ", "sentence2": "urn was small.", "label": true }
These sentence pairs are then treated as independent examples.
@article{sakaguchi2019winogrande, title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale}, author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin}, journal={arXiv preprint arXiv:1907.10641}, year={2019} } @article{DBLP:journals/corr/abs-1907-11692, author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke Zettlemoyer and Veselin Stoyanov}, title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach}, journal = {CoRR}, volume = {abs/1907.11692}, year = {2019}, url = {http://arxiv.org/abs/1907.11692}, archivePrefix = {arXiv}, eprint = {1907.11692}, timestamp = {Thu, 01 Aug 2019 08:59:33 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }