模型:
DeepPavlov/distilrubert-base-cased-conversational
会话型DistilRuBERT(俄语,大小写敏感,6层,768隐藏层,12个头,总参数量为135.4M) 是在OpenSubtitles[1]、 Dirty 、 Pikabu 和Taiga语料库的社交媒体部分[2](作为 Conversational RuBERT )上训练的。
我们的DistilRuBERT受到[3]、[4]的极大启发。具体而言,我们使用了以下内容:
模型的训练时间约为100小时,在8个nVIDIA Tesla P100-SXM2.0 16Gb上进行训练。
为了评估推理速度的改进情况,我们在随机序列上运行了教师模型和学生模型,其中seq_len=512,batch_size=16(用于吞吐量),batch_size=1(用于延迟)。所有测试都在Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz和nVIDIA Tesla P100-SXM2.0 16Gb上进行。
如果您认为该模型对您的研究有用,我们请求您引用 this 这篇论文:
@misc{https://doi.org/10.48550/arxiv.2205.02340, doi = {10.48550/ARXIV.2205.02340}, url = {https://arxiv.org/abs/2205.02340}, author = {Kolesnikova, Alina and Kuratov, Yuri and Konovalov, Vasily and Burtsev, Mikhail}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Knowledge Distillation of Russian Language Models with Reduction of Vocabulary}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} }
[1]: P. Lison and J. Tiedemann, 2016, OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016)
[2]: Shavrina T., Shapovalova O. (2017) TO THE METHODOLOGY OF CORPUS CONSTRUCTION FOR MACHINE LEARNING: "TAIGA" SYNTAX TREE CORPUS AND PARSER. in proc. of "CORPORA2017", international conference , Saint-Petersbourg, 2017.
[3]: Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
[4]: https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation