This model was trained on slightly adapted code from run_t5_mlm_flax.py . If you want to know about training details or evaluation results, see SlovakT5_report.pdf . For evaluation, you can also run SlovakT5_eval.ipynb .
SlovakT5-small can be fine-tuned for a lot of different downstream tasks. For example, NER:
from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("ApoTro/slovak-t5-small") model = T5ForConditionalGeneration.from_pretrained("ApoTro/slovak-t5-small") input_ids = tokenizer("ner veta: Do druhého kola postúpili Robert Fico a Andrej Kiska s rozdielom 4,0%.", return_tensors="pt").input_ids labels = tokenizer("per: Robert Fico | per: Andrej Kiska", return_tensors="pt").input_ids # the forward function automatically creates the correct decoder_input_ids loss = model(input_ids=input_ids, labels=labels).loss loss.item()