模型:
Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition
任务:
特征提取语言:
ru其他:
wav2vec2 custom_code 音频分类 audio emotion emotion-recognition emotion-classification speech Eval Results许可:
mitimport torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, AutoModel, Wav2Vec2FeatureExtractor import librosa import numpy as np def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model_(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs
TRUST = True config = AutoConfig.from_pretrained('Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition', trust_remote_code=TRUST) model_ = AutoModel.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition", trust_remote_code=TRUST) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_.to(device)
result = predict("/path/to/russian_audio_speech.wav", 16000) print(result)
# outputs [{'Emotion': 'anger', 'Score': '0.0%'}, {'Emotion': 'disgust', 'Score': '100.0%'}, {'Emotion': 'enthusiasm', 'Score': '0.0%'}, {'Emotion': 'fear', 'Score': '0.0%'}, {'Emotion': 'happiness', 'Score': '0.0%'}, {'Emotion': 'neutral', 'Score': '0.0%'}, {'Emotion': 'sadness', 'Score': '0.0%'}]
precision | recall | f1-score | support | |
---|---|---|---|---|
anger | 0.97 | 0.86 | 0.92 | 44 |
disgust | 0.71 | 0.78 | 0.74 | 37 |
enthusiasm | 0.51 | 0.80 | 0.62 | 40 |
fear | 0.80 | 0.62 | 0.70 | 45 |
happiness | 0.66 | 0.70 | 0.68 | 44 |
neutral | 0.81 | 0.66 | 0.72 | 38 |
sadness | 0.79 | 0.59 | 0.68 | 32 |
accuracy | 0.72 | 280 | ||
macro avg | 0.75 | 0.72 | 0.72 | 280 |
weighted avg | 0.75 | 0.72 | 0.73 | 280 |
@misc{Aniemore, author = {Артем Аментес, Илья Лубенец, Никита Давидчук}, title = {Открытая библиотека искусственного интеллекта для анализа и выявления эмоциональных оттенков речи человека}, year = {2022}, publisher = {Hugging Face}, journal = {Hugging Face Hub}, howpublished = {\url{https://huggingface.com/aniemore/Aniemore}}, email = {hello@socialcode.ru} }