数据集:

zh-plus/tiny-imagenet

批注创建人:

crowdsourced

语言创建人:

crowdsourced

大小:

100K<n<1M

计算机处理:

monolingual

语言:

en
中文

Dataset Card for tiny-imagenet

Dataset Summary

Tiny ImageNet contains 100000 images of 200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images, and 50 test images.

Languages

The class labels in the dataset are in English.

Dataset Structure

Data Instances

{
  'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=64x64 at 0x1A800E8E190,
  'label': 15
}

Data Fields

  • image: A PIL.Image.Image object containing the image. Note that when accessing the image column: dataset[0]["image"] the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0].
  • label: an int classification label. -1 for test set as the labels are missing. Check classes.py for the map of numbers & labels.

Data Splits

Train Valid
# of samples 100000 10000

Usage

Example

Load Dataset
def example_usage():
    tiny_imagenet = load_dataset('Maysee/tiny-imagenet', split='train')
    print(tiny_imagenet[0])

if __name__ == '__main__':
    example_usage()