数据集:
renumics/food101-enriched
? Data-centric AI principles have become increasingly important for real-world use cases. At Renumics we believe that classical benchmark datasets and competitions should be extended to reflect this development.
? This is why we are publishing benchmark datasets with application-specific enrichments (e.g. embeddings, baseline results, uncertainties, label error scores). We hope this helps the ML community in the following ways:
? This dataset is an enriched version of the Food101 Data Set .
The enrichments allow you to quickly gain insights into the dataset. The open source data curation tool Renumics Spotlight enables that with just a few lines of code:
Install datasets and Spotlight via pip :
!pip install renumics-spotlight datasets
Load the dataset from huggingface in your notebook:
import datasets dataset = datasets.load_dataset("renumics/food101-enriched", split="train")
Start exploring with a simple view:
from renumics import spotlight df_show = dataset.to_pandas() spotlight.show(df_show, port=8000, dtype={"image": spotlight.Image})
You can use the UI to interactively configure the view on the data. Depending on the concrete tasks (e.g. model comparison, debugging, outlier detection) you might want to leverage different enrichments and metadata.
This data set contains 101'000 images from 101 food categories. For each class, 250 manually reviewed test images are provided as well as 750 training images. On purpose, the training images were not cleaned, and thus still contain some amount of noise. This comes mostly in the form of intense colors and sometimes wrong labels. All images were rescaled to have a maximum side length of 512 pixels.
English class labels.
A sample from the training set is provided below:
{ "image": "/huggingface/datasets/downloads/extracted/49750366cbaf225ce1b5a5c033fa85ceddeee2e82f1d6e0365e8287859b4c7c8/0/0.jpg", "label": 6, "label_str": "beignets", "split": "train" }Class Label Mappings
{ "apple_pie": 0, "baby_back_ribs": 1, "baklava": 2, "beef_carpaccio": 3, "beef_tartare": 4, "beet_salad": 5, "beignets": 6, "bibimbap": 7, "bread_pudding": 8, "breakfast_burrito": 9, "bruschetta": 10, "caesar_salad": 11, "cannoli": 12, "caprese_salad": 13, "carrot_cake": 14, "ceviche": 15, "cheesecake": 16, "cheese_plate": 17, "chicken_curry": 18, "chicken_quesadilla": 19, "chicken_wings": 20, "chocolate_cake": 21, "chocolate_mousse": 22, "churros": 23, "clam_chowder": 24, "club_sandwich": 25, "crab_cakes": 26, "creme_brulee": 27, "croque_madame": 28, "cup_cakes": 29, "deviled_eggs": 30, "donuts": 31, "dumplings": 32, "edamame": 33, "eggs_benedict": 34, "escargots": 35, "falafel": 36, "filet_mignon": 37, "fish_and_chips": 38, "foie_gras": 39, "french_fries": 40, "french_onion_soup": 41, "french_toast": 42, "fried_calamari": 43, "fried_rice": 44, "frozen_yogurt": 45, "garlic_bread": 46, "gnocchi": 47, "greek_salad": 48, "grilled_cheese_sandwich": 49, "grilled_salmon": 50, "guacamole": 51, "gyoza": 52, "hamburger": 53, "hot_and_sour_soup": 54, "hot_dog": 55, "huevos_rancheros": 56, "hummus": 57, "ice_cream": 58, "lasagna": 59, "lobster_bisque": 60, "lobster_roll_sandwich": 61, "macaroni_and_cheese": 62, "macarons": 63, "miso_soup": 64, "mussels": 65, "nachos": 66, "omelette": 67, "onion_rings": 68, "oysters": 69, "pad_thai": 70, "paella": 71, "pancakes": 72, "panna_cotta": 73, "peking_duck": 74, "pho": 75, "pizza": 76, "pork_chop": 77, "poutine": 78, "prime_rib": 79, "pulled_pork_sandwich": 80, "ramen": 81, "ravioli": 82, "red_velvet_cake": 83, "risotto": 84, "samosa": 85, "sashimi": 86, "scallops": 87, "seaweed_salad": 88, "shrimp_and_grits": 89, "spaghetti_bolognese": 90, "spaghetti_carbonara": 91, "spring_rolls": 92, "steak": 93, "strawberry_shortcake": 94, "sushi": 95, "tacos": 96, "takoyaki": 97, "tiramisu": 98, "tuna_tartare": 99, "waffles": 100 }
Feature | Data Type |
---|---|
image | Image(decode=True, id=None) |
split | Value(dtype='string', id=None) |
label | ClassLabel(names=[...], id=None) |
label_str | Value(dtype='string', id=None) |
Dataset Split | Number of Images in Split |
---|---|
Train | 75750 |
Test | 25250 |
[More Information Needed]
[More Information Needed]
Who are the source language producers?[More Information Needed]
[More Information Needed]
Who are the annotators?[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
The Food-101 data set consists of images from Foodspotting [1] which are not property of the Federal Institute of Technology Zurich (ETHZ). Any use beyond scientific fair use must be negociated with the respective picture owners according to the Foodspotting terms of use [2]. [1] http://www.foodspotting.com/ [2] http://www.foodspotting.com/terms/
If you use this dataset, please cite the following paper:
@inproceedings{bossard14, title = {Food-101 -- Mining Discriminative Components with Random Forests}, author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc}, booktitle = {European Conference on Computer Vision}, year = {2014} }
Lukas Bossard, Matthieu Guillaumin, Luc Van Gool, and Renumics GmbH.