This dataset is designed for object detection tasks with a focus on detecting elements in mobile UI designs. The targeted objects include text, images, and groups. The dataset contains images and object detection boxes, including class labels and location information.
Load the dataset and take a look at an example:
>>> from datasets import load_dataset >>>> ds = load_dataset("mrtoy/mobile-ui-design") >>> example = ds[0] >>> example {'width': 375, 'height': 667, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=375x667>, 'objects': {'bbox': [[0.0, 0.0, 375.0, 667.0], [0.0, 0.0, 375.0, 667.0], [0.0, 0.0, 375.0, 20.0], ... ], 'category': ['text', 'rectangle', 'rectangle', ...]}}
The dataset has the following fields:
You can visualize the bboxes on the image using some internal torch utilities.
import torch from torchvision.ops import box_convert from torchvision.utils import draw_bounding_boxes from torchvision.transforms.functional import pil_to_tensor, to_pil_image item = ds[0] boxes_xywh = torch.tensor(item['objects']['bbox']) boxes_xyxy = box_convert(boxes_xywh, 'xywh', 'xyxy') to_pil_image( draw_bounding_boxes( pil_to_tensor(item['image']), boxes_xyxy, labels=item['objects']['category'], ) )
This dataset can be used for various applications, such as: