数据集:
miam
计算机处理:
multilingual大小:
10K<n<100K语言创建人:
expert-generated批注创建人:
expert-generated源数据集:
original许可:
cc-by-sa-4.0Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and analyzing natural language understanding systems specifically designed for spoken language. Datasets are in English, French, German, Italian and Spanish. They cover a variety of domains including spontaneous speech, scripted scenarios, and joint task completion. All datasets contain dialogue act labels.
[More Information Needed]
English, French, German, Italian, Spanish.
For the dihana configuration one example from the dataset is:
{ 'Speaker': 'U', 'Utterance': 'Hola , quería obtener el horario para ir a Valencia', 'Dialogue_Act': 9, # 'Pregunta' ('Request') 'Dialogue_ID': '0', 'File_ID': 'B209_BA5c3', }iLISTEN Corpus
For the ilisten configuration one example from the dataset is:
{ 'Speaker': 'T_11_U11', 'Utterance': 'ok, grazie per le informazioni', 'Dialogue_Act': 6, # 'KIND-ATTITUDE_SMALL-TALK' 'Dialogue_ID': '0', }LORIA Corpus
For the loria configuration one example from the dataset is:
{ 'Speaker': 'Samir', 'Utterance': 'Merci de votre visite, bonne chance, et à la prochaine !', 'Dialogue_Act': 21, # 'quit' 'Dialogue_ID': '5', 'File_ID': 'Dial_20111128_113927', }HCRC MapTask Corpus
For the maptask configuration one example from the dataset is:
{ 'Speaker': 'f', 'Utterance': 'is it underneath the rope bridge or to the left', 'Dialogue_Act': 6, # 'query_w' 'Dialogue_ID': '0', 'File_ID': 'q4ec1', }VERBMOBIL
For the vm2 configuration one example from the dataset is:
{ 'Utterance': 'ja was sind viereinhalb Stunden Bahngerüttel gegen siebzig Minuten Turbulenzen im Flugzeug', 'Utterance': 'Utterance', 'Dialogue_Act': 'Dialogue_Act', # 'INFORM' 'Speaker': 'A', 'Dialogue_ID': '66', }
For the dihana configuration, the different fields are:
For the ilisten configuration, the different fields are:
For the loria configuration, the different fields are:
For the maptask configuration, the different fields are:
For the vm2 configuration, the different fields are:
Dataset name | Train | Valid | Test |
---|---|---|---|
dihana | 19063 | 2123 | 2361 |
ilisten | 1986 | 230 | 971 |
loria | 8465 | 942 | 1047 |
maptask | 25382 | 5221 | 5335 |
vm2 | 25060 | 2860 | 2855 |
[More Information Needed]
[More Information Needed]
Who are the source language producers?[More Information Needed]
[More Information Needed]
Who are the annotators?[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
Anonymous.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License .
@inproceedings{colombo-etal-2021-code, title = "Code-switched inspired losses for spoken dialog representations", author = "Colombo, Pierre and Chapuis, Emile and Labeau, Matthieu and Clavel, Chlo{\'e}", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.656", doi = "10.18653/v1/2021.emnlp-main.656", pages = "8320--8337", abstract = "Spoken dialogue systems need to be able to handle both multiple languages and multilinguality inside a conversation (\textit{e.g} in case of code-switching). In this work, we introduce new pretraining losses tailored to learn generic multilingual spoken dialogue representations. The goal of these losses is to expose the model to code-switched language. In order to scale up training, we automatically build a pretraining corpus composed of multilingual conversations in five different languages (French, Italian, English, German and Spanish) from OpenSubtitles, a huge multilingual corpus composed of 24.3G tokens. We test the generic representations on MIAM, a new benchmark composed of five dialogue act corpora on the same aforementioned languages as well as on two novel multilingual tasks (\textit{i.e} multilingual mask utterance retrieval and multilingual inconsistency identification). Our experiments show that our new losses achieve a better performance in both monolingual and multilingual settings.", }
Thanks to @eusip and @PierreColombo for adding this dataset.