数据集:
clinc_oos
任务:
文本分类语言:
en计算机处理:
monolingual大小:
10K<n<100K语言创建人:
crowdsourced批注创建人:
expert-generated源数据集:
original许可:
cc-by-3.0Task-oriented dialog systems need to know when a query falls outside their range of supported intents, but current text classification corpora only define label sets that cover every example. We introduce a new dataset that includes queries that are out-of-scope (OOS), i.e., queries that do not fall into any of the system's supported intents. This poses a new challenge because models cannot assume that every query at inference time belongs to a system-supported intent class. Our dataset also covers 150 intent classes over 10 domains, capturing the breadth that a production task-oriented agent must handle. It offers a way of more rigorously and realistically benchmarking text classification in task-driven dialog systems.
English
A sample from the training set is provided below:
{ 'text' : 'can you walk me through setting up direct deposits to my bank of internet savings account', 'label' : 108 }
The Label Id to Label Name map is mentioned in the table below:
| Label Id | Label name | |--- |--- | | 0 | restaurant_reviews | | 1 | nutrition_info | | 2 | account_blocked | | 3 | oil_change_how | | 4 | time | | 5 | weather | | 6 | redeem_rewards | | 7 | interest_rate | | 8 | gas_type | | 9 | accept_reservations | | 10 | smart_home | | 11 | user_name | | 12 | report_lost_card | | 13 | repeat | | 14 | whisper_mode | | 15 | what_are_your_hobbies | | 16 | order | | 17 | jump_start | | 18 | schedule_meeting | | 19 | meeting_schedule | | 20 | freeze_account | | 21 | what_song | | 22 | meaning_of_life | | 23 | restaurant_reservation | | 24 | traffic | | 25 | make_call | | 26 | text | | 27 | bill_balance | | 28 | improve_credit_score | | 29 | change_language | | 30 | no | | 31 | measurement_conversion | | 32 | timer | | 33 | flip_coin | | 34 | do_you_have_pets | | 35 | balance | | 36 | tell_joke | | 37 | last_maintenance | | 38 | exchange_rate | | 39 | uber | | 40 | car_rental | | 41 | credit_limit | | 42 | oos | | 43 | shopping_list | | 44 | expiration_date | | 45 | routing | | 46 | meal_suggestion | | 47 | tire_change | | 48 | todo_list | | 49 | card_declined | | 50 | rewards_balance | | 51 | change_accent | | 52 | vaccines | | 53 | reminder_update | | 54 | food_last | | 55 | change_ai_name | | 56 | bill_due | | 57 | who_do_you_work_for | | 58 | share_location | | 59 | international_visa | | 60 | calendar | | 61 | translate | | 62 | carry_on | | 63 | book_flight | | 64 | insurance_change | | 65 | todo_list_update | | 66 | timezone | | 67 | cancel_reservation | | 68 | transactions | | 69 | credit_score | | 70 | report_fraud | | 71 | spending_history | | 72 | directions | | 73 | spelling | | 74 | insurance | | 75 | what_is_your_name | | 76 | reminder | | 77 | where_are_you_from | | 78 | distance | | 79 | payday | | 80 | flight_status | | 81 | find_phone | | 82 | greeting | | 83 | alarm | | 84 | order_status | | 85 | confirm_reservation | | 86 | cook_time | | 87 | damaged_card | | 88 | reset_settings | | 89 | pin_change | | 90 | replacement_card_duration | | 91 | new_card | | 92 | roll_dice | | 93 | income | | 94 | taxes | | 95 | date | | 96 | who_made_you | | 97 | pto_request | | 98 | tire_pressure | | 99 | how_old_are_you | | 100 | rollover_401k | | 101 | pto_request_status | | 102 | how_busy | | 103 | application_status | | 104 | recipe | | 105 | calendar_update | | 106 | play_music | | 107 | yes | | 108 | direct_deposit | | 109 | credit_limit_change | | 110 | gas | | 111 | pay_bill | | 112 | ingredients_list | | 113 | lost_luggage | | 114 | goodbye | | 115 | what_can_i_ask_you | | 116 | book_hotel | | 117 | are_you_a_bot | | 118 | next_song | | 119 | change_speed | | 120 | plug_type | | 121 | maybe | | 122 | w2 | | 123 | oil_change_when | | 124 | thank_you | | 125 | shopping_list_update | | 126 | pto_balance | | 127 | order_checks | | 128 | travel_alert | | 129 | fun_fact | | 130 | sync_device | | 131 | schedule_maintenance | | 132 | apr | | 133 | transfer | | 134 | ingredient_substitution | | 135 | calories | | 136 | current_location | | 137 | international_fees | | 138 | calculator | | 139 | definition | | 140 | next_holiday | | 141 | update_playlist | | 142 | mpg | | 143 | min_payment | | 144 | change_user_name | | 145 | restaurant_suggestion | | 146 | travel_notification | | 147 | cancel | | 148 | pto_used | | 149 | travel_suggestion | | 150 | change_volume |
The dataset comes in different subsets:
name | train | validation | test |
---|---|---|---|
small | 7600 | 3100 | 5500 |
imbalanced | 10625 | 3100 | 5500 |
plus | 15250 | 3100 | 5500 |
[More Information Needed]
[More Information Needed]
Who are the source language producers?[More Information Needed]
[More Information Needed]
Who are the annotators?[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
@inproceedings{larson-etal-2019-evaluation, title = "An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction", author = "Larson, Stefan and Mahendran, Anish and Peper, Joseph J. and Clarke, Christopher and Lee, Andrew and Hill, Parker and Kummerfeld, Jonathan K. and Leach, Kevin and Laurenzano, Michael A. and Tang, Lingjia and Mars, Jason", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", year = "2019", url = "https://www.aclweb.org/anthology/D19-1131" }
Thanks to @sumanthd17 for adding this dataset.