数据集:
cifar100
任务:
图像分类语言:
en计算机处理:
monolingual大小:
10K<n<100K语言创建人:
found批注创建人:
crowdsourced许可:
license:unknownThe CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class. There are 500 training images and 100 testing images per class. There are 50000 training images and 10000 test images. The 100 classes are grouped into 20 superclasses. There are two labels per image - fine label (actual class) and coarse label (superclass).
English
A sample from the training set is provided below:
{ 'img': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32 at 0x2767F58E080>, 'fine_label': 19, 'coarse_label': 11 }
img : A PIL.Image.Image object containing the 32x32 image. Note that when accessing the image column: dataset[0]["image"] the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0]
fine_label : an int classification label with the following mapping:
0 : apple
1 : aquarium_fish
2 : baby
3 : bear
4 : beaver
5 : bed
6 : bee
7 : beetle
8 : bicycle
9 : bottle
10 : bowl
11 : boy
12 : bridge
13 : bus
14 : butterfly
15 : camel
16 : can
17 : castle
18 : caterpillar
19 : cattle
20 : chair
21 : chimpanzee
22 : clock
23 : cloud
24 : cockroach
25 : couch
26 : cra
27 : crocodile
28 : cup
29 : dinosaur
30 : dolphin
31 : elephant
32 : flatfish
33 : forest
34 : fox
35 : girl
36 : hamster
37 : house
38 : kangaroo
39 : keyboard
40 : lamp
41 : lawn_mower
42 : leopard
43 : lion
44 : lizard
45 : lobster
46 : man
47 : maple_tree
48 : motorcycle
49 : mountain
50 : mouse
51 : mushroom
52 : oak_tree
53 : orange
54 : orchid
55 : otter
56 : palm_tree
57 : pear
58 : pickup_truck
59 : pine_tree
60 : plain
61 : plate
62 : poppy
63 : porcupine
64 : possum
65 : rabbit
66 : raccoon
67 : ray
68 : road
69 : rocket
70 : rose
71 : sea
72 : seal
73 : shark
74 : shrew
75 : skunk
76 : skyscraper
77 : snail
78 : snake
79 : spider
80 : squirrel
81 : streetcar
82 : sunflower
83 : sweet_pepper
84 : table
85 : tank
86 : telephone
87 : television
88 : tiger
89 : tractor
90 : train
91 : trout
92 : tulip
93 : turtle
94 : wardrobe
95 : whale
96 : willow_tree
97 : wolf
98 : woman
99 : worm
coarse_label : an int coarse classification label with following mapping:
0 : aquatic_mammals
1 : fish
2 : flowers
3 : food_containers
4 : fruit_and_vegetables
5 : household_electrical_devices
6 : household_furniture
7 : insects
8 : large_carnivores
9 : large_man-made_outdoor_things
10 : large_natural_outdoor_scenes
11 : large_omnivores_and_herbivores
12 : medium_mammals
13 : non-insect_invertebrates
14 : people
15 : reptiles
16 : small_mammals
17 : trees
18 : vehicles_1
19 : vehicles_2
name | train | test |
---|---|---|
cifar100 | 50000 | 10000 |
[More Information Needed]
[More Information Needed]
Who are the source language producers?[More Information Needed]
[More Information Needed]
Who are the annotators?[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
@TECHREPORT{Krizhevsky09learningmultiple, author = {Alex Krizhevsky}, title = {Learning multiple layers of features from tiny images}, institution = {}, year = {2009} }
Thanks to @gchhablani for adding this dataset.