数据集:

allenai/wcep_sparse_mean

语言:

en

计算机处理:

monolingual

大小:

1K<n<10K

语言创建人:

expert-generated

批注创建人:

expert-generated

源数据集:

original

许可:

other
中文

This is a copy of the WCEP-10 dataset, except the input source documents of its test split have been replaced by a sparse retriever. The retrieval pipeline used:

  • query : The summary field of each example
  • corpus : The union of all documents in the train , validation and test splits
  • retriever : BM25 via PyTerrier with default settings
  • top-k strategy : "mean" , i.e. the number of documents retrieved, k , is set as the mean number of documents seen across examples in this dataset, in this case k==9

Retrieval results on the train set:

Recall@100 Rprec Precision@k Recall@k
0.8753 0.6443 0.6196 0.6237

Retrieval results on the validation set:

Recall@100 Rprec Precision@k Recall@k
0.8706 0.6280 0.6260 0.5989

Retrieval results on the test set:

Recall@100 Rprec Precision@k Recall@k
0.8836 0.6658 0.6601 0.6388